Spaces:
Runtime error
Runtime error
Duplicate from smangrul/peft-lora-sd-dreambooth
Browse filesCo-authored-by: Sourab Mangrulkar <[email protected]>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +371 -0
- colab.py +371 -0
- inference.py +91 -0
- requirements.txt +12 -0
- style.css +3 -0
- train_dreambooth.py +1005 -0
- trainer.py +156 -0
- uploader.py +17 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Peft Lora Sd Dreambooth
|
3 |
+
emoji: 🎨
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.16.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: openrail
|
11 |
+
duplicated_from: smangrul/peft-lora-sd-dreambooth
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)
|
4 |
+
|
5 |
+
The code in this repo is partly adapted from the following repositories:
|
6 |
+
https://huggingface.co/spaces/hysts/LoRA-SD-training
|
7 |
+
https://huggingface.co/spaces/multimodalart/dreambooth-training
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
import os
|
12 |
+
import pathlib
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
from inference import InferencePipeline
|
19 |
+
from trainer import Trainer
|
20 |
+
from uploader import upload
|
21 |
+
|
22 |
+
|
23 |
+
TITLE = "# LoRA + Dreambooth Training and Inference Demo 🎨"
|
24 |
+
DESCRIPTION = "Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)."
|
25 |
+
|
26 |
+
|
27 |
+
ORIGINAL_SPACE_ID = "smangrul/peft-lora-sd-dreambooth"
|
28 |
+
|
29 |
+
SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
|
30 |
+
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
31 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
32 |
+
"""
|
33 |
+
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
|
34 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
35 |
+
|
36 |
+
else:
|
37 |
+
SETTINGS = "Settings"
|
38 |
+
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
|
39 |
+
<center>
|
40 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
41 |
+
"T4 small" is sufficient to run this demo.
|
42 |
+
</center>
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
with gr.Box():
|
49 |
+
gr.Markdown(warning_text)
|
50 |
+
return demo
|
51 |
+
|
52 |
+
|
53 |
+
def update_output_files() -> dict:
|
54 |
+
paths = sorted(pathlib.Path("results").glob("*.pt"))
|
55 |
+
config_paths = sorted(pathlib.Path("results").glob("*.json"))
|
56 |
+
paths = paths + config_paths
|
57 |
+
paths = [path.as_posix() for path in paths] # type: ignore
|
58 |
+
return gr.update(value=paths or None)
|
59 |
+
|
60 |
+
|
61 |
+
def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks:
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
base_model = gr.Dropdown(
|
64 |
+
choices=[
|
65 |
+
"CompVis/stable-diffusion-v1-4",
|
66 |
+
"runwayml/stable-diffusion-v1-5",
|
67 |
+
"stabilityai/stable-diffusion-2-1-base",
|
68 |
+
],
|
69 |
+
value="runwayml/stable-diffusion-v1-5",
|
70 |
+
label="Base Model",
|
71 |
+
visible=True,
|
72 |
+
)
|
73 |
+
resolution = gr.Dropdown(choices=["512"], value="512", label="Resolution", visible=False)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Box():
|
77 |
+
gr.Markdown("Training Data")
|
78 |
+
concept_images = gr.Files(label="Images for your concept")
|
79 |
+
concept_prompt = gr.Textbox(label="Concept Prompt", max_lines=1)
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
- Upload images of the style you are planning on training on.
|
83 |
+
- For a concept prompt, use a unique, made up word to avoid collisions.
|
84 |
+
- Guidelines for getting good results:
|
85 |
+
- Dreambooth for an `object` or `style`:
|
86 |
+
- 5-10 images of the object from different angles
|
87 |
+
- 500-800 iterations should be good enough.
|
88 |
+
- Prior preservation is recommended.
|
89 |
+
- `class_prompt`:
|
90 |
+
- `a photo of object`
|
91 |
+
- `style`
|
92 |
+
- `concept_prompt`:
|
93 |
+
- `<concept prompt> object`
|
94 |
+
- `<concept prompt> style`
|
95 |
+
- `a photo of <concept prompt> object`
|
96 |
+
- `a photo of <concept prompt> style`
|
97 |
+
- Dreambooth for a `Person/Face`:
|
98 |
+
- 15-50 images of the person from different angles, lighting, and expressions.
|
99 |
+
Have considerable photos with close up faces.
|
100 |
+
- 800-1200 iterations should be good enough.
|
101 |
+
- good defaults for hyperparams
|
102 |
+
- Model - `runwayml/stable-diffusion-v1-5` or `stabilityai/stable-diffusion-2-1-base`
|
103 |
+
- Use/check Prior preservation.
|
104 |
+
- Number of class images to use - 200
|
105 |
+
- Prior Loss Weight - 1
|
106 |
+
- LoRA Rank for unet - 16
|
107 |
+
- LoRA Alpha for unet - 20
|
108 |
+
- lora dropout - 0
|
109 |
+
- LoRA Bias for unet - `all`
|
110 |
+
- LoRA Rank for CLIP - 16
|
111 |
+
- LoRA Alpha for CLIP - 17
|
112 |
+
- LoRA Bias for CLIP - `all`
|
113 |
+
- lora dropout for CLIP - 0
|
114 |
+
- Uncheck `FP16` and `8bit-Adam` (don't use them for faces)
|
115 |
+
- `class_prompt`: Use the gender related word of the person
|
116 |
+
- `man`
|
117 |
+
- `woman`
|
118 |
+
- `boy`
|
119 |
+
- `girl`
|
120 |
+
- `concept_prompt`: just the unique, made up word, e.g., `srm`
|
121 |
+
- Choose `all` for `lora_bias` and `text_encode_lora_bias`
|
122 |
+
- Dreambooth for a `Scene`:
|
123 |
+
- 15-50 images of the scene from different angles, lighting, and expressions.
|
124 |
+
- 800-1200 iterations should be good enough.
|
125 |
+
- Prior preservation is recommended.
|
126 |
+
- `class_prompt`:
|
127 |
+
- `scene`
|
128 |
+
- `landscape`
|
129 |
+
- `city`
|
130 |
+
- `beach`
|
131 |
+
- `mountain`
|
132 |
+
- `concept_prompt`:
|
133 |
+
- `<concept prompt> scene`
|
134 |
+
- `<concept prompt> landscape`
|
135 |
+
- Experiment with various values for lora dropouts, enabling/disabling fp16 and 8bit-Adam
|
136 |
+
"""
|
137 |
+
)
|
138 |
+
with gr.Box():
|
139 |
+
gr.Markdown("Training Parameters")
|
140 |
+
num_training_steps = gr.Number(label="Number of Training Steps", value=1000, precision=0)
|
141 |
+
learning_rate = gr.Number(label="Learning Rate", value=0.0001)
|
142 |
+
gradient_checkpointing = gr.Checkbox(label="Whether to use gradient checkpointing", value=True)
|
143 |
+
train_text_encoder = gr.Checkbox(label="Train Text Encoder", value=True)
|
144 |
+
with_prior_preservation = gr.Checkbox(label="Prior Preservation", value=True)
|
145 |
+
class_prompt = gr.Textbox(
|
146 |
+
label="Class Prompt", max_lines=1, placeholder='Example: "a photo of object"'
|
147 |
+
)
|
148 |
+
num_class_images = gr.Number(label="Number of class images to use", value=50, precision=0)
|
149 |
+
prior_loss_weight = gr.Number(label="Prior Loss Weight", value=1.0, precision=1)
|
150 |
+
# use_lora = gr.Checkbox(label="Whether to use LoRA", value=True)
|
151 |
+
lora_r = gr.Number(label="LoRA Rank for unet", value=4, precision=0)
|
152 |
+
lora_alpha = gr.Number(
|
153 |
+
label="LoRA Alpha for unet. scaling factor = lora_alpha/lora_r", value=4, precision=0
|
154 |
+
)
|
155 |
+
lora_dropout = gr.Number(label="lora dropout", value=0.00)
|
156 |
+
lora_bias = gr.Dropdown(
|
157 |
+
choices=["none", "all", "lora_only"],
|
158 |
+
value="none",
|
159 |
+
label="LoRA Bias for unet. This enables bias params to be trainable based on the bias type",
|
160 |
+
visible=True,
|
161 |
+
)
|
162 |
+
lora_text_encoder_r = gr.Number(label="LoRA Rank for CLIP", value=4, precision=0)
|
163 |
+
lora_text_encoder_alpha = gr.Number(
|
164 |
+
label="LoRA Alpha for CLIP. scaling factor = lora_alpha/lora_r", value=4, precision=0
|
165 |
+
)
|
166 |
+
lora_text_encoder_dropout = gr.Number(label="lora dropout for CLIP", value=0.00)
|
167 |
+
lora_text_encoder_bias = gr.Dropdown(
|
168 |
+
choices=["none", "all", "lora_only"],
|
169 |
+
value="none",
|
170 |
+
label="LoRA Bias for CLIP. This enables bias params to be trainable based on the bias type",
|
171 |
+
visible=True,
|
172 |
+
)
|
173 |
+
gradient_accumulation = gr.Number(label="Number of Gradient Accumulation", value=1, precision=0)
|
174 |
+
fp16 = gr.Checkbox(label="FP16", value=True)
|
175 |
+
use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=True)
|
176 |
+
gr.Markdown(
|
177 |
+
"""
|
178 |
+
- It will take about 20-30 minutes to train for 1000 steps with a T4 GPU.
|
179 |
+
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
|
180 |
+
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
181 |
+
"""
|
182 |
+
)
|
183 |
+
|
184 |
+
run_button = gr.Button("Start Training")
|
185 |
+
with gr.Box():
|
186 |
+
with gr.Row():
|
187 |
+
check_status_button = gr.Button("Check Training Status")
|
188 |
+
with gr.Column():
|
189 |
+
with gr.Box():
|
190 |
+
gr.Markdown("Message")
|
191 |
+
training_status = gr.Markdown()
|
192 |
+
output_files = gr.Files(label="Trained Weight Files and Configs")
|
193 |
+
|
194 |
+
run_button.click(fn=pipe.clear)
|
195 |
+
|
196 |
+
run_button.click(
|
197 |
+
fn=trainer.run,
|
198 |
+
inputs=[
|
199 |
+
base_model,
|
200 |
+
resolution,
|
201 |
+
num_training_steps,
|
202 |
+
concept_images,
|
203 |
+
concept_prompt,
|
204 |
+
learning_rate,
|
205 |
+
gradient_accumulation,
|
206 |
+
fp16,
|
207 |
+
use_8bit_adam,
|
208 |
+
gradient_checkpointing,
|
209 |
+
train_text_encoder,
|
210 |
+
with_prior_preservation,
|
211 |
+
prior_loss_weight,
|
212 |
+
class_prompt,
|
213 |
+
num_class_images,
|
214 |
+
lora_r,
|
215 |
+
lora_alpha,
|
216 |
+
lora_bias,
|
217 |
+
lora_dropout,
|
218 |
+
lora_text_encoder_r,
|
219 |
+
lora_text_encoder_alpha,
|
220 |
+
lora_text_encoder_bias,
|
221 |
+
lora_text_encoder_dropout,
|
222 |
+
],
|
223 |
+
outputs=[
|
224 |
+
training_status,
|
225 |
+
output_files,
|
226 |
+
],
|
227 |
+
queue=False,
|
228 |
+
)
|
229 |
+
check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False)
|
230 |
+
check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False)
|
231 |
+
return demo
|
232 |
+
|
233 |
+
|
234 |
+
def find_weight_files() -> List[str]:
|
235 |
+
curr_dir = pathlib.Path(__file__).parent
|
236 |
+
paths = sorted(curr_dir.rglob("*.pt"))
|
237 |
+
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
238 |
+
|
239 |
+
|
240 |
+
def reload_lora_weight_list() -> dict:
|
241 |
+
return gr.update(choices=find_weight_files())
|
242 |
+
|
243 |
+
|
244 |
+
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
245 |
+
with gr.Blocks() as demo:
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column():
|
248 |
+
base_model = gr.Dropdown(
|
249 |
+
choices=[
|
250 |
+
"CompVis/stable-diffusion-v1-4",
|
251 |
+
"runwayml/stable-diffusion-v1-5",
|
252 |
+
"stabilityai/stable-diffusion-2-1-base",
|
253 |
+
],
|
254 |
+
value="runwayml/stable-diffusion-v1-5",
|
255 |
+
label="Base Model",
|
256 |
+
visible=True,
|
257 |
+
)
|
258 |
+
reload_button = gr.Button("Reload Weight List")
|
259 |
+
lora_weight_name = gr.Dropdown(
|
260 |
+
choices=find_weight_files(), value="lora/lora_disney.pt", label="LoRA Weight File"
|
261 |
+
)
|
262 |
+
prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "style of sks, baby lion"')
|
263 |
+
negative_prompt = gr.Textbox(
|
264 |
+
label="Negative Prompt", max_lines=1, placeholder='Example: "blurry, botched, low quality"'
|
265 |
+
)
|
266 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=1)
|
267 |
+
with gr.Accordion("Other Parameters", open=False):
|
268 |
+
num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=1000, step=1, value=50)
|
269 |
+
guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7)
|
270 |
+
|
271 |
+
run_button = gr.Button("Generate")
|
272 |
+
|
273 |
+
gr.Markdown(
|
274 |
+
"""
|
275 |
+
- After training, you can press "Reload Weight List" button to load your trained model names.
|
276 |
+
- Few repos to refer for ideas:
|
277 |
+
- https://huggingface.co/smangrul/smangrul
|
278 |
+
- https://huggingface.co/smangrul/painting-in-the-style-of-smangrul
|
279 |
+
- https://huggingface.co/smangrul/erenyeager
|
280 |
+
"""
|
281 |
+
)
|
282 |
+
with gr.Column():
|
283 |
+
result = gr.Image(label="Result")
|
284 |
+
|
285 |
+
reload_button.click(fn=reload_lora_weight_list, inputs=None, outputs=lora_weight_name)
|
286 |
+
prompt.submit(
|
287 |
+
fn=pipe.run,
|
288 |
+
inputs=[
|
289 |
+
base_model,
|
290 |
+
lora_weight_name,
|
291 |
+
prompt,
|
292 |
+
negative_prompt,
|
293 |
+
seed,
|
294 |
+
num_steps,
|
295 |
+
guidance_scale,
|
296 |
+
],
|
297 |
+
outputs=result,
|
298 |
+
queue=False,
|
299 |
+
)
|
300 |
+
run_button.click(
|
301 |
+
fn=pipe.run,
|
302 |
+
inputs=[
|
303 |
+
base_model,
|
304 |
+
lora_weight_name,
|
305 |
+
prompt,
|
306 |
+
negative_prompt,
|
307 |
+
seed,
|
308 |
+
num_steps,
|
309 |
+
guidance_scale,
|
310 |
+
],
|
311 |
+
outputs=result,
|
312 |
+
queue=False,
|
313 |
+
)
|
314 |
+
seed.change(
|
315 |
+
fn=pipe.run,
|
316 |
+
inputs=[
|
317 |
+
base_model,
|
318 |
+
lora_weight_name,
|
319 |
+
prompt,
|
320 |
+
negative_prompt,
|
321 |
+
seed,
|
322 |
+
num_steps,
|
323 |
+
guidance_scale,
|
324 |
+
],
|
325 |
+
outputs=result,
|
326 |
+
queue=False,
|
327 |
+
)
|
328 |
+
return demo
|
329 |
+
|
330 |
+
|
331 |
+
def create_upload_demo() -> gr.Blocks:
|
332 |
+
with gr.Blocks() as demo:
|
333 |
+
model_name = gr.Textbox(label="Model Name")
|
334 |
+
hf_token = gr.Textbox(label="Hugging Face Token (with write permission)")
|
335 |
+
upload_button = gr.Button("Upload")
|
336 |
+
with gr.Box():
|
337 |
+
gr.Markdown("Message")
|
338 |
+
result = gr.Markdown()
|
339 |
+
gr.Markdown(
|
340 |
+
"""
|
341 |
+
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
342 |
+
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
343 |
+
"""
|
344 |
+
)
|
345 |
+
|
346 |
+
upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result)
|
347 |
+
|
348 |
+
return demo
|
349 |
+
|
350 |
+
|
351 |
+
pipe = InferencePipeline()
|
352 |
+
trainer = Trainer()
|
353 |
+
|
354 |
+
with gr.Blocks(css="style.css") as demo:
|
355 |
+
if os.getenv("IS_SHARED_UI"):
|
356 |
+
show_warning(SHARED_UI_WARNING)
|
357 |
+
if not torch.cuda.is_available():
|
358 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
359 |
+
|
360 |
+
gr.Markdown(TITLE)
|
361 |
+
gr.Markdown(DESCRIPTION)
|
362 |
+
|
363 |
+
with gr.Tabs():
|
364 |
+
with gr.TabItem("Train"):
|
365 |
+
create_training_demo(trainer, pipe)
|
366 |
+
with gr.TabItem("Test"):
|
367 |
+
create_inference_demo(pipe)
|
368 |
+
with gr.TabItem("Upload"):
|
369 |
+
create_upload_demo()
|
370 |
+
|
371 |
+
demo.queue(default_enabled=False).launch(share=False)
|
colab.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)
|
4 |
+
|
5 |
+
The code in this repo is partly adapted from the following repositories:
|
6 |
+
https://huggingface.co/spaces/hysts/LoRA-SD-training
|
7 |
+
https://huggingface.co/spaces/multimodalart/dreambooth-training
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
import os
|
12 |
+
import pathlib
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
from inference import InferencePipeline
|
19 |
+
from trainer import Trainer
|
20 |
+
from uploader import upload
|
21 |
+
|
22 |
+
|
23 |
+
TITLE = "# LoRA + Dreambooth Training and Inference Demo 🎨"
|
24 |
+
DESCRIPTION = "Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)."
|
25 |
+
|
26 |
+
|
27 |
+
ORIGINAL_SPACE_ID = "smangrul/peft-lora-sd-dreambooth"
|
28 |
+
|
29 |
+
SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
|
30 |
+
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
31 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
32 |
+
"""
|
33 |
+
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
|
34 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
35 |
+
|
36 |
+
else:
|
37 |
+
SETTINGS = "Settings"
|
38 |
+
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
|
39 |
+
<center>
|
40 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
41 |
+
"T4 small" is sufficient to run this demo.
|
42 |
+
</center>
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
with gr.Box():
|
49 |
+
gr.Markdown(warning_text)
|
50 |
+
return demo
|
51 |
+
|
52 |
+
|
53 |
+
def update_output_files() -> dict:
|
54 |
+
paths = sorted(pathlib.Path("results").glob("*.pt"))
|
55 |
+
config_paths = sorted(pathlib.Path("results").glob("*.json"))
|
56 |
+
paths = paths + config_paths
|
57 |
+
paths = [path.as_posix() for path in paths] # type: ignore
|
58 |
+
return gr.update(value=paths or None)
|
59 |
+
|
60 |
+
|
61 |
+
def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks:
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
base_model = gr.Dropdown(
|
64 |
+
choices=[
|
65 |
+
"CompVis/stable-diffusion-v1-4",
|
66 |
+
"runwayml/stable-diffusion-v1-5",
|
67 |
+
"stabilityai/stable-diffusion-2-1-base",
|
68 |
+
],
|
69 |
+
value="runwayml/stable-diffusion-v1-5",
|
70 |
+
label="Base Model",
|
71 |
+
visible=True,
|
72 |
+
)
|
73 |
+
resolution = gr.Dropdown(choices=["512"], value="512", label="Resolution", visible=False)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Box():
|
77 |
+
gr.Markdown("Training Data")
|
78 |
+
concept_images = gr.Files(label="Images for your concept")
|
79 |
+
concept_prompt = gr.Textbox(label="Concept Prompt", max_lines=1)
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
- Upload images of the style you are planning on training on.
|
83 |
+
- For a concept prompt, use a unique, made up word to avoid collisions.
|
84 |
+
- Guidelines for getting good results:
|
85 |
+
- Dreambooth for an `object` or `style`:
|
86 |
+
- 5-10 images of the object from different angles
|
87 |
+
- 500-800 iterations should be good enough.
|
88 |
+
- Prior preservation is recommended.
|
89 |
+
- `class_prompt`:
|
90 |
+
- `a photo of object`
|
91 |
+
- `style`
|
92 |
+
- `concept_prompt`:
|
93 |
+
- `<concept prompt> object`
|
94 |
+
- `<concept prompt> style`
|
95 |
+
- `a photo of <concept prompt> object`
|
96 |
+
- `a photo of <concept prompt> style`
|
97 |
+
- Dreambooth for a `Person/Face`:
|
98 |
+
- 15-50 images of the person from different angles, lighting, and expressions.
|
99 |
+
Have considerable photos with close up faces.
|
100 |
+
- 800-1200 iterations should be good enough.
|
101 |
+
- good defaults for hyperparams
|
102 |
+
- Model - `runwayml/stable-diffusion-v1-5` or `stabilityai/stable-diffusion-2-1-base`
|
103 |
+
- Use/check Prior preservation.
|
104 |
+
- Number of class images to use - 200
|
105 |
+
- Prior Loss Weight - 1
|
106 |
+
- LoRA Rank for unet - 16
|
107 |
+
- LoRA Alpha for unet - 20
|
108 |
+
- lora dropout - 0
|
109 |
+
- LoRA Bias for unet - `all`
|
110 |
+
- LoRA Rank for CLIP - 16
|
111 |
+
- LoRA Alpha for CLIP - 17
|
112 |
+
- LoRA Bias for CLIP - `all`
|
113 |
+
- lora dropout for CLIP - 0
|
114 |
+
- Uncheck `FP16` and `8bit-Adam` (don't use them for faces)
|
115 |
+
- `class_prompt`: Use the gender related word of the person
|
116 |
+
- `man`
|
117 |
+
- `woman`
|
118 |
+
- `boy`
|
119 |
+
- `girl`
|
120 |
+
- `concept_prompt`: just the unique, made up word, e.g., `srm`
|
121 |
+
- Choose `all` for `lora_bias` and `text_encode_lora_bias`
|
122 |
+
- Dreambooth for a `Scene`:
|
123 |
+
- 15-50 images of the scene from different angles, lighting, and expressions.
|
124 |
+
- 800-1200 iterations should be good enough.
|
125 |
+
- Prior preservation is recommended.
|
126 |
+
- `class_prompt`:
|
127 |
+
- `scene`
|
128 |
+
- `landscape`
|
129 |
+
- `city`
|
130 |
+
- `beach`
|
131 |
+
- `mountain`
|
132 |
+
- `concept_prompt`:
|
133 |
+
- `<concept prompt> scene`
|
134 |
+
- `<concept prompt> landscape`
|
135 |
+
- Experiment with various values for lora dropouts, enabling/disabling fp16 and 8bit-Adam
|
136 |
+
"""
|
137 |
+
)
|
138 |
+
with gr.Box():
|
139 |
+
gr.Markdown("Training Parameters")
|
140 |
+
num_training_steps = gr.Number(label="Number of Training Steps", value=1000, precision=0)
|
141 |
+
learning_rate = gr.Number(label="Learning Rate", value=0.0001)
|
142 |
+
gradient_checkpointing = gr.Checkbox(label="Whether to use gradient checkpointing", value=True)
|
143 |
+
train_text_encoder = gr.Checkbox(label="Train Text Encoder", value=True)
|
144 |
+
with_prior_preservation = gr.Checkbox(label="Prior Preservation", value=True)
|
145 |
+
class_prompt = gr.Textbox(
|
146 |
+
label="Class Prompt", max_lines=1, placeholder='Example: "a photo of object"'
|
147 |
+
)
|
148 |
+
num_class_images = gr.Number(label="Number of class images to use", value=50, precision=0)
|
149 |
+
prior_loss_weight = gr.Number(label="Prior Loss Weight", value=1.0, precision=1)
|
150 |
+
# use_lora = gr.Checkbox(label="Whether to use LoRA", value=True)
|
151 |
+
lora_r = gr.Number(label="LoRA Rank for unet", value=4, precision=0)
|
152 |
+
lora_alpha = gr.Number(
|
153 |
+
label="LoRA Alpha for unet. scaling factor = lora_r/lora_alpha", value=4, precision=0
|
154 |
+
)
|
155 |
+
lora_dropout = gr.Number(label="lora dropout", value=0.00)
|
156 |
+
lora_bias = gr.Dropdown(
|
157 |
+
choices=["none", "all", "lora_only"],
|
158 |
+
value="none",
|
159 |
+
label="LoRA Bias for unet. This enables bias params to be trainable based on the bias type",
|
160 |
+
visible=True,
|
161 |
+
)
|
162 |
+
lora_text_encoder_r = gr.Number(label="LoRA Rank for CLIP", value=4, precision=0)
|
163 |
+
lora_text_encoder_alpha = gr.Number(
|
164 |
+
label="LoRA Alpha for CLIP. scaling factor = lora_r/lora_alpha", value=4, precision=0
|
165 |
+
)
|
166 |
+
lora_text_encoder_dropout = gr.Number(label="lora dropout for CLIP", value=0.00)
|
167 |
+
lora_text_encoder_bias = gr.Dropdown(
|
168 |
+
choices=["none", "all", "lora_only"],
|
169 |
+
value="none",
|
170 |
+
label="LoRA Bias for CLIP. This enables bias params to be trainable based on the bias type",
|
171 |
+
visible=True,
|
172 |
+
)
|
173 |
+
gradient_accumulation = gr.Number(label="Number of Gradient Accumulation", value=1, precision=0)
|
174 |
+
fp16 = gr.Checkbox(label="FP16", value=True)
|
175 |
+
use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=True)
|
176 |
+
gr.Markdown(
|
177 |
+
"""
|
178 |
+
- It will take about 20-30 minutes to train for 1000 steps with a T4 GPU.
|
179 |
+
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
|
180 |
+
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
181 |
+
"""
|
182 |
+
)
|
183 |
+
|
184 |
+
run_button = gr.Button("Start Training")
|
185 |
+
with gr.Box():
|
186 |
+
with gr.Row():
|
187 |
+
check_status_button = gr.Button("Check Training Status")
|
188 |
+
with gr.Column():
|
189 |
+
with gr.Box():
|
190 |
+
gr.Markdown("Message")
|
191 |
+
training_status = gr.Markdown()
|
192 |
+
output_files = gr.Files(label="Trained Weight Files and Configs")
|
193 |
+
|
194 |
+
run_button.click(fn=pipe.clear)
|
195 |
+
|
196 |
+
run_button.click(
|
197 |
+
fn=trainer.run,
|
198 |
+
inputs=[
|
199 |
+
base_model,
|
200 |
+
resolution,
|
201 |
+
num_training_steps,
|
202 |
+
concept_images,
|
203 |
+
concept_prompt,
|
204 |
+
learning_rate,
|
205 |
+
gradient_accumulation,
|
206 |
+
fp16,
|
207 |
+
use_8bit_adam,
|
208 |
+
gradient_checkpointing,
|
209 |
+
train_text_encoder,
|
210 |
+
with_prior_preservation,
|
211 |
+
prior_loss_weight,
|
212 |
+
class_prompt,
|
213 |
+
num_class_images,
|
214 |
+
lora_r,
|
215 |
+
lora_alpha,
|
216 |
+
lora_bias,
|
217 |
+
lora_dropout,
|
218 |
+
lora_text_encoder_r,
|
219 |
+
lora_text_encoder_alpha,
|
220 |
+
lora_text_encoder_bias,
|
221 |
+
lora_text_encoder_dropout,
|
222 |
+
],
|
223 |
+
outputs=[
|
224 |
+
training_status,
|
225 |
+
output_files,
|
226 |
+
],
|
227 |
+
queue=False,
|
228 |
+
)
|
229 |
+
check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False)
|
230 |
+
check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False)
|
231 |
+
return demo
|
232 |
+
|
233 |
+
|
234 |
+
def find_weight_files() -> List[str]:
|
235 |
+
curr_dir = pathlib.Path(__file__).parent
|
236 |
+
paths = sorted(curr_dir.rglob("*.pt"))
|
237 |
+
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
238 |
+
|
239 |
+
|
240 |
+
def reload_lora_weight_list() -> dict:
|
241 |
+
return gr.update(choices=find_weight_files())
|
242 |
+
|
243 |
+
|
244 |
+
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
245 |
+
with gr.Blocks() as demo:
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column():
|
248 |
+
base_model = gr.Dropdown(
|
249 |
+
choices=[
|
250 |
+
"CompVis/stable-diffusion-v1-4",
|
251 |
+
"runwayml/stable-diffusion-v1-5",
|
252 |
+
"stabilityai/stable-diffusion-2-1-base",
|
253 |
+
],
|
254 |
+
value="runwayml/stable-diffusion-v1-5",
|
255 |
+
label="Base Model",
|
256 |
+
visible=True,
|
257 |
+
)
|
258 |
+
reload_button = gr.Button("Reload Weight List")
|
259 |
+
lora_weight_name = gr.Dropdown(
|
260 |
+
choices=find_weight_files(), value="lora/lora_disney.pt", label="LoRA Weight File"
|
261 |
+
)
|
262 |
+
prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "style of sks, baby lion"')
|
263 |
+
negative_prompt = gr.Textbox(
|
264 |
+
label="Negative Prompt", max_lines=1, placeholder='Example: "blurry, botched, low quality"'
|
265 |
+
)
|
266 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=1)
|
267 |
+
with gr.Accordion("Other Parameters", open=False):
|
268 |
+
num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=1000, step=1, value=50)
|
269 |
+
guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7)
|
270 |
+
|
271 |
+
run_button = gr.Button("Generate")
|
272 |
+
|
273 |
+
gr.Markdown(
|
274 |
+
"""
|
275 |
+
- After training, you can press "Reload Weight List" button to load your trained model names.
|
276 |
+
- Few repos to refer for ideas:
|
277 |
+
- https://huggingface.co/smangrul/smangrul
|
278 |
+
- https://huggingface.co/smangrul/painting-in-the-style-of-smangrul
|
279 |
+
- https://huggingface.co/smangrul/erenyeager
|
280 |
+
"""
|
281 |
+
)
|
282 |
+
with gr.Column():
|
283 |
+
result = gr.Image(label="Result")
|
284 |
+
|
285 |
+
reload_button.click(fn=reload_lora_weight_list, inputs=None, outputs=lora_weight_name)
|
286 |
+
prompt.submit(
|
287 |
+
fn=pipe.run,
|
288 |
+
inputs=[
|
289 |
+
base_model,
|
290 |
+
lora_weight_name,
|
291 |
+
prompt,
|
292 |
+
negative_prompt,
|
293 |
+
seed,
|
294 |
+
num_steps,
|
295 |
+
guidance_scale,
|
296 |
+
],
|
297 |
+
outputs=result,
|
298 |
+
queue=False,
|
299 |
+
)
|
300 |
+
run_button.click(
|
301 |
+
fn=pipe.run,
|
302 |
+
inputs=[
|
303 |
+
base_model,
|
304 |
+
lora_weight_name,
|
305 |
+
prompt,
|
306 |
+
negative_prompt,
|
307 |
+
seed,
|
308 |
+
num_steps,
|
309 |
+
guidance_scale,
|
310 |
+
],
|
311 |
+
outputs=result,
|
312 |
+
queue=False,
|
313 |
+
)
|
314 |
+
seed.change(
|
315 |
+
fn=pipe.run,
|
316 |
+
inputs=[
|
317 |
+
base_model,
|
318 |
+
lora_weight_name,
|
319 |
+
prompt,
|
320 |
+
negative_prompt,
|
321 |
+
seed,
|
322 |
+
num_steps,
|
323 |
+
guidance_scale,
|
324 |
+
],
|
325 |
+
outputs=result,
|
326 |
+
queue=False,
|
327 |
+
)
|
328 |
+
return demo
|
329 |
+
|
330 |
+
|
331 |
+
def create_upload_demo() -> gr.Blocks:
|
332 |
+
with gr.Blocks() as demo:
|
333 |
+
model_name = gr.Textbox(label="Model Name")
|
334 |
+
hf_token = gr.Textbox(label="Hugging Face Token (with write permission)")
|
335 |
+
upload_button = gr.Button("Upload")
|
336 |
+
with gr.Box():
|
337 |
+
gr.Markdown("Message")
|
338 |
+
result = gr.Markdown()
|
339 |
+
gr.Markdown(
|
340 |
+
"""
|
341 |
+
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
342 |
+
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
343 |
+
"""
|
344 |
+
)
|
345 |
+
|
346 |
+
upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result)
|
347 |
+
|
348 |
+
return demo
|
349 |
+
|
350 |
+
|
351 |
+
pipe = InferencePipeline()
|
352 |
+
trainer = Trainer()
|
353 |
+
|
354 |
+
with gr.Blocks(css="style.css") as demo:
|
355 |
+
if os.getenv("IS_SHARED_UI"):
|
356 |
+
show_warning(SHARED_UI_WARNING)
|
357 |
+
if not torch.cuda.is_available():
|
358 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
359 |
+
|
360 |
+
gr.Markdown(TITLE)
|
361 |
+
gr.Markdown(DESCRIPTION)
|
362 |
+
|
363 |
+
with gr.Tabs():
|
364 |
+
with gr.TabItem("Train"):
|
365 |
+
create_training_demo(trainer, pipe)
|
366 |
+
with gr.TabItem("Test"):
|
367 |
+
create_inference_demo(pipe)
|
368 |
+
with gr.TabItem("Upload"):
|
369 |
+
create_upload_demo()
|
370 |
+
|
371 |
+
demo.queue(default_enabled=False).launch(share=True)
|
inference.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import json
|
5 |
+
import pathlib
|
6 |
+
import sys
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import PIL.Image
|
10 |
+
import torch
|
11 |
+
from diffusers import StableDiffusionPipeline
|
12 |
+
from peft import LoraModel, LoraConfig, set_peft_model_state_dict
|
13 |
+
|
14 |
+
|
15 |
+
class InferencePipeline:
|
16 |
+
def __init__(self):
|
17 |
+
self.pipe = None
|
18 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
+
self.weight_path = None
|
20 |
+
|
21 |
+
def clear(self) -> None:
|
22 |
+
self.weight_path = None
|
23 |
+
del self.pipe
|
24 |
+
self.pipe = None
|
25 |
+
torch.cuda.empty_cache()
|
26 |
+
gc.collect()
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def get_lora_weight_path(name: str) -> pathlib.Path:
|
30 |
+
curr_dir = pathlib.Path(__file__).parent
|
31 |
+
return curr_dir / name, curr_dir / f'{name.replace(".pt", "_config.json")}'
|
32 |
+
|
33 |
+
def load_and_set_lora_ckpt(self, pipe, weight_path, config_path, dtype):
|
34 |
+
with open(config_path, "r") as f:
|
35 |
+
lora_config = json.load(f)
|
36 |
+
lora_checkpoint_sd = torch.load(weight_path, map_location=self.device)
|
37 |
+
unet_lora_ds = {k: v for k, v in lora_checkpoint_sd.items() if "text_encoder_" not in k}
|
38 |
+
text_encoder_lora_ds = {
|
39 |
+
k.replace("text_encoder_", ""): v for k, v in lora_checkpoint_sd.items() if "text_encoder_" in k
|
40 |
+
}
|
41 |
+
|
42 |
+
unet_config = LoraConfig(**lora_config["peft_config"])
|
43 |
+
pipe.unet = LoraModel(unet_config, pipe.unet)
|
44 |
+
set_peft_model_state_dict(pipe.unet, unet_lora_ds)
|
45 |
+
|
46 |
+
if "text_encoder_peft_config" in lora_config:
|
47 |
+
text_encoder_config = LoraConfig(**lora_config["text_encoder_peft_config"])
|
48 |
+
pipe.text_encoder = LoraModel(text_encoder_config, pipe.text_encoder)
|
49 |
+
set_peft_model_state_dict(pipe.text_encoder, text_encoder_lora_ds)
|
50 |
+
|
51 |
+
if dtype in (torch.float16, torch.bfloat16):
|
52 |
+
pipe.unet.half()
|
53 |
+
pipe.text_encoder.half()
|
54 |
+
|
55 |
+
pipe.to(self.device)
|
56 |
+
return pipe
|
57 |
+
|
58 |
+
def load_pipe(self, model_id: str, lora_filename: str) -> None:
|
59 |
+
weight_path, config_path = self.get_lora_weight_path(lora_filename)
|
60 |
+
if weight_path == self.weight_path:
|
61 |
+
return
|
62 |
+
|
63 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(self.device)
|
64 |
+
pipe = pipe.to(self.device)
|
65 |
+
pipe = self.load_and_set_lora_ckpt(pipe, weight_path, config_path, torch.float16)
|
66 |
+
self.pipe = pipe
|
67 |
+
|
68 |
+
def run(
|
69 |
+
self,
|
70 |
+
base_model: str,
|
71 |
+
lora_weight_name: str,
|
72 |
+
prompt: str,
|
73 |
+
negative_prompt: str,
|
74 |
+
seed: int,
|
75 |
+
n_steps: int,
|
76 |
+
guidance_scale: float,
|
77 |
+
) -> PIL.Image.Image:
|
78 |
+
if not torch.cuda.is_available():
|
79 |
+
raise gr.Error("CUDA is not available.")
|
80 |
+
|
81 |
+
self.load_pipe(base_model, lora_weight_name)
|
82 |
+
|
83 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
84 |
+
out = self.pipe(
|
85 |
+
prompt,
|
86 |
+
num_inference_steps=n_steps,
|
87 |
+
guidance_scale=guidance_scale,
|
88 |
+
generator=generator,
|
89 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
90 |
+
) # type: ignore
|
91 |
+
return out.images[0]
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
peft
|
4 |
+
datasets
|
5 |
+
git+https://github.com/huggingface/accelerate
|
6 |
+
git+https://github.com/huggingface/diffusers
|
7 |
+
git+https://github.com/huggingface/transformers
|
8 |
+
tqdm
|
9 |
+
ftfy
|
10 |
+
Pillow
|
11 |
+
bitsandbytes
|
12 |
+
gradio
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
train_dreambooth.py
ADDED
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import gc
|
3 |
+
import hashlib
|
4 |
+
import itertools
|
5 |
+
import json
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import threading
|
10 |
+
import warnings
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torch.utils.checkpoint
|
17 |
+
import transformers
|
18 |
+
from accelerate import Accelerator
|
19 |
+
from accelerate.logging import get_logger
|
20 |
+
from accelerate.utils import set_seed
|
21 |
+
from torch.utils.data import Dataset
|
22 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
import diffusers
|
26 |
+
import psutil
|
27 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
|
28 |
+
from diffusers.optimization import get_scheduler
|
29 |
+
from diffusers.utils import check_min_version
|
30 |
+
from diffusers.utils.import_utils import is_xformers_available
|
31 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
32 |
+
from peft import LoraConfig, LoraModel, get_peft_model_state_dict
|
33 |
+
from PIL import Image
|
34 |
+
from torchvision import transforms
|
35 |
+
from tqdm.auto import tqdm
|
36 |
+
|
37 |
+
|
38 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
39 |
+
check_min_version("0.10.0.dev0")
|
40 |
+
|
41 |
+
logger = get_logger(__name__)
|
42 |
+
|
43 |
+
UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] # , "ff.net.0.proj"]
|
44 |
+
TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"]
|
45 |
+
|
46 |
+
|
47 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
48 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
49 |
+
pretrained_model_name_or_path,
|
50 |
+
subfolder="text_encoder",
|
51 |
+
revision=revision,
|
52 |
+
)
|
53 |
+
model_class = text_encoder_config.architectures[0]
|
54 |
+
|
55 |
+
if model_class == "CLIPTextModel":
|
56 |
+
from transformers import CLIPTextModel
|
57 |
+
|
58 |
+
return CLIPTextModel
|
59 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
60 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
61 |
+
|
62 |
+
return RobertaSeriesModelWithTransformation
|
63 |
+
else:
|
64 |
+
raise ValueError(f"{model_class} is not supported.")
|
65 |
+
|
66 |
+
|
67 |
+
def parse_args(input_args=None):
|
68 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
69 |
+
parser.add_argument(
|
70 |
+
"--pretrained_model_name_or_path",
|
71 |
+
type=str,
|
72 |
+
default=None,
|
73 |
+
required=True,
|
74 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--revision",
|
78 |
+
type=str,
|
79 |
+
default=None,
|
80 |
+
required=False,
|
81 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
82 |
+
)
|
83 |
+
parser.add_argument(
|
84 |
+
"--tokenizer_name",
|
85 |
+
type=str,
|
86 |
+
default=None,
|
87 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"--instance_data_dir",
|
91 |
+
type=str,
|
92 |
+
default=None,
|
93 |
+
required=True,
|
94 |
+
help="A folder containing the training data of instance images.",
|
95 |
+
)
|
96 |
+
parser.add_argument(
|
97 |
+
"--class_data_dir",
|
98 |
+
type=str,
|
99 |
+
default=None,
|
100 |
+
required=False,
|
101 |
+
help="A folder containing the training data of class images.",
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--instance_prompt",
|
105 |
+
type=str,
|
106 |
+
default=None,
|
107 |
+
required=True,
|
108 |
+
help="The prompt with identifier specifying the instance",
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--class_prompt",
|
112 |
+
type=str,
|
113 |
+
default=None,
|
114 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--with_prior_preservation",
|
118 |
+
default=False,
|
119 |
+
action="store_true",
|
120 |
+
help="Flag to add prior preservation loss.",
|
121 |
+
)
|
122 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
123 |
+
parser.add_argument(
|
124 |
+
"--num_class_images",
|
125 |
+
type=int,
|
126 |
+
default=100,
|
127 |
+
help=(
|
128 |
+
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
129 |
+
" class_data_dir, additional images will be sampled with class_prompt."
|
130 |
+
),
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--output_dir",
|
134 |
+
type=str,
|
135 |
+
default="text-inversion-model",
|
136 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
137 |
+
)
|
138 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
139 |
+
parser.add_argument(
|
140 |
+
"--resolution",
|
141 |
+
type=int,
|
142 |
+
default=512,
|
143 |
+
help=(
|
144 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
145 |
+
" resolution"
|
146 |
+
),
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
150 |
+
)
|
151 |
+
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
152 |
+
|
153 |
+
# lora args
|
154 |
+
parser.add_argument("--use_lora", action="store_true", help="Whether to use Lora for parameter efficient tuning")
|
155 |
+
parser.add_argument("--lora_r", type=int, default=8, help="Lora rank, only used if use_lora is True")
|
156 |
+
parser.add_argument("--lora_alpha", type=int, default=32, help="Lora alpha, only used if use_lora is True")
|
157 |
+
parser.add_argument("--lora_dropout", type=float, default=0.0, help="Lora dropout, only used if use_lora is True")
|
158 |
+
parser.add_argument(
|
159 |
+
"--lora_bias",
|
160 |
+
type=str,
|
161 |
+
default="none",
|
162 |
+
help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora is True",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--lora_text_encoder_r",
|
166 |
+
type=int,
|
167 |
+
default=8,
|
168 |
+
help="Lora rank for text encoder, only used if `use_lora` and `train_text_encoder` are True",
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--lora_text_encoder_alpha",
|
172 |
+
type=int,
|
173 |
+
default=32,
|
174 |
+
help="Lora alpha for text encoder, only used if `use_lora` and `train_text_encoder` are True",
|
175 |
+
)
|
176 |
+
parser.add_argument(
|
177 |
+
"--lora_text_encoder_dropout",
|
178 |
+
type=float,
|
179 |
+
default=0.0,
|
180 |
+
help="Lora dropout for text encoder, only used if `use_lora` and `train_text_encoder` are True",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--lora_text_encoder_bias",
|
184 |
+
type=str,
|
185 |
+
default="none",
|
186 |
+
help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora and `train_text_encoder` are True",
|
187 |
+
)
|
188 |
+
|
189 |
+
parser.add_argument(
|
190 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
194 |
+
)
|
195 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
196 |
+
parser.add_argument(
|
197 |
+
"--max_train_steps",
|
198 |
+
type=int,
|
199 |
+
default=None,
|
200 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--checkpointing_steps",
|
204 |
+
type=int,
|
205 |
+
default=500,
|
206 |
+
help=(
|
207 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
208 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
209 |
+
" training using `--resume_from_checkpoint`."
|
210 |
+
),
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--resume_from_checkpoint",
|
214 |
+
type=str,
|
215 |
+
default=None,
|
216 |
+
help=(
|
217 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
218 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
219 |
+
),
|
220 |
+
)
|
221 |
+
parser.add_argument(
|
222 |
+
"--gradient_accumulation_steps",
|
223 |
+
type=int,
|
224 |
+
default=1,
|
225 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--gradient_checkpointing",
|
229 |
+
action="store_true",
|
230 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--learning_rate",
|
234 |
+
type=float,
|
235 |
+
default=5e-6,
|
236 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
237 |
+
)
|
238 |
+
parser.add_argument(
|
239 |
+
"--scale_lr",
|
240 |
+
action="store_true",
|
241 |
+
default=False,
|
242 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
243 |
+
)
|
244 |
+
parser.add_argument(
|
245 |
+
"--lr_scheduler",
|
246 |
+
type=str,
|
247 |
+
default="constant",
|
248 |
+
help=(
|
249 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
250 |
+
' "constant", "constant_with_warmup"]'
|
251 |
+
),
|
252 |
+
)
|
253 |
+
parser.add_argument(
|
254 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
255 |
+
)
|
256 |
+
parser.add_argument(
|
257 |
+
"--lr_num_cycles",
|
258 |
+
type=int,
|
259 |
+
default=1,
|
260 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
261 |
+
)
|
262 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
263 |
+
parser.add_argument(
|
264 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
265 |
+
)
|
266 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
267 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
268 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
269 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
270 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
271 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
272 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
273 |
+
parser.add_argument(
|
274 |
+
"--hub_model_id",
|
275 |
+
type=str,
|
276 |
+
default=None,
|
277 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
278 |
+
)
|
279 |
+
parser.add_argument(
|
280 |
+
"--logging_dir",
|
281 |
+
type=str,
|
282 |
+
default="logs",
|
283 |
+
help=(
|
284 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
285 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
286 |
+
),
|
287 |
+
)
|
288 |
+
parser.add_argument(
|
289 |
+
"--allow_tf32",
|
290 |
+
action="store_true",
|
291 |
+
help=(
|
292 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
293 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
294 |
+
),
|
295 |
+
)
|
296 |
+
parser.add_argument(
|
297 |
+
"--report_to",
|
298 |
+
type=str,
|
299 |
+
default="tensorboard",
|
300 |
+
help=(
|
301 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
302 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
303 |
+
),
|
304 |
+
)
|
305 |
+
parser.add_argument(
|
306 |
+
"--mixed_precision",
|
307 |
+
type=str,
|
308 |
+
default=None,
|
309 |
+
choices=["no", "fp16", "bf16"],
|
310 |
+
help=(
|
311 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
312 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
313 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
314 |
+
),
|
315 |
+
)
|
316 |
+
parser.add_argument(
|
317 |
+
"--prior_generation_precision",
|
318 |
+
type=str,
|
319 |
+
default=None,
|
320 |
+
choices=["no", "fp32", "fp16", "bf16"],
|
321 |
+
help=(
|
322 |
+
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
323 |
+
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
324 |
+
),
|
325 |
+
)
|
326 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
327 |
+
parser.add_argument(
|
328 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
329 |
+
)
|
330 |
+
|
331 |
+
if input_args is not None:
|
332 |
+
args = parser.parse_args(input_args)
|
333 |
+
else:
|
334 |
+
args = parser.parse_args()
|
335 |
+
|
336 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
337 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
338 |
+
args.local_rank = env_local_rank
|
339 |
+
|
340 |
+
if args.with_prior_preservation:
|
341 |
+
if args.class_data_dir is None:
|
342 |
+
raise ValueError("You must specify a data directory for class images.")
|
343 |
+
if args.class_prompt is None:
|
344 |
+
raise ValueError("You must specify prompt for class images.")
|
345 |
+
else:
|
346 |
+
# logger is not available yet
|
347 |
+
if args.class_data_dir is not None:
|
348 |
+
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
349 |
+
if args.class_prompt is not None:
|
350 |
+
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
351 |
+
|
352 |
+
return args
|
353 |
+
|
354 |
+
|
355 |
+
# Converting Bytes to Megabytes
|
356 |
+
def b2mb(x):
|
357 |
+
return int(x / 2**20)
|
358 |
+
|
359 |
+
|
360 |
+
# This context manager is used to track the peak memory usage of the process
|
361 |
+
class TorchTracemalloc:
|
362 |
+
def __enter__(self):
|
363 |
+
gc.collect()
|
364 |
+
torch.cuda.empty_cache()
|
365 |
+
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
|
366 |
+
self.begin = torch.cuda.memory_allocated()
|
367 |
+
self.process = psutil.Process()
|
368 |
+
|
369 |
+
self.cpu_begin = self.cpu_mem_used()
|
370 |
+
self.peak_monitoring = True
|
371 |
+
peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
|
372 |
+
peak_monitor_thread.daemon = True
|
373 |
+
peak_monitor_thread.start()
|
374 |
+
return self
|
375 |
+
|
376 |
+
def cpu_mem_used(self):
|
377 |
+
"""get resident set size memory for the current process"""
|
378 |
+
return self.process.memory_info().rss
|
379 |
+
|
380 |
+
def peak_monitor_func(self):
|
381 |
+
self.cpu_peak = -1
|
382 |
+
|
383 |
+
while True:
|
384 |
+
self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak)
|
385 |
+
|
386 |
+
# can't sleep or will not catch the peak right (this comment is here on purpose)
|
387 |
+
# time.sleep(0.001) # 1msec
|
388 |
+
|
389 |
+
if not self.peak_monitoring:
|
390 |
+
break
|
391 |
+
|
392 |
+
def __exit__(self, *exc):
|
393 |
+
self.peak_monitoring = False
|
394 |
+
|
395 |
+
gc.collect()
|
396 |
+
torch.cuda.empty_cache()
|
397 |
+
self.end = torch.cuda.memory_allocated()
|
398 |
+
self.peak = torch.cuda.max_memory_allocated()
|
399 |
+
self.used = b2mb(self.end - self.begin)
|
400 |
+
self.peaked = b2mb(self.peak - self.begin)
|
401 |
+
|
402 |
+
self.cpu_end = self.cpu_mem_used()
|
403 |
+
self.cpu_used = b2mb(self.cpu_end - self.cpu_begin)
|
404 |
+
self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin)
|
405 |
+
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
|
406 |
+
|
407 |
+
|
408 |
+
def print_trainable_parameters(model):
|
409 |
+
"""
|
410 |
+
Prints the number of trainable parameters in the model.
|
411 |
+
"""
|
412 |
+
trainable_params = 0
|
413 |
+
all_param = 0
|
414 |
+
for _, param in model.named_parameters():
|
415 |
+
all_param += param.numel()
|
416 |
+
if param.requires_grad:
|
417 |
+
trainable_params += param.numel()
|
418 |
+
print(
|
419 |
+
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
|
420 |
+
)
|
421 |
+
|
422 |
+
|
423 |
+
class DreamBoothDataset(Dataset):
|
424 |
+
"""
|
425 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
426 |
+
It pre-processes the images and the tokenizes prompts.
|
427 |
+
"""
|
428 |
+
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
instance_data_root,
|
432 |
+
instance_prompt,
|
433 |
+
tokenizer,
|
434 |
+
class_data_root=None,
|
435 |
+
class_prompt=None,
|
436 |
+
size=512,
|
437 |
+
center_crop=False,
|
438 |
+
):
|
439 |
+
self.size = size
|
440 |
+
self.center_crop = center_crop
|
441 |
+
self.tokenizer = tokenizer
|
442 |
+
|
443 |
+
self.instance_data_root = Path(instance_data_root)
|
444 |
+
if not self.instance_data_root.exists():
|
445 |
+
raise ValueError("Instance images root doesn't exists.")
|
446 |
+
|
447 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
448 |
+
self.num_instance_images = len(self.instance_images_path)
|
449 |
+
self.instance_prompt = instance_prompt
|
450 |
+
self._length = self.num_instance_images
|
451 |
+
|
452 |
+
if class_data_root is not None:
|
453 |
+
self.class_data_root = Path(class_data_root)
|
454 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
455 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
456 |
+
self.num_class_images = len(self.class_images_path)
|
457 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
458 |
+
self.class_prompt = class_prompt
|
459 |
+
else:
|
460 |
+
self.class_data_root = None
|
461 |
+
|
462 |
+
self.image_transforms = transforms.Compose(
|
463 |
+
[
|
464 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
465 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
466 |
+
transforms.ToTensor(),
|
467 |
+
transforms.Normalize([0.5], [0.5]),
|
468 |
+
]
|
469 |
+
)
|
470 |
+
|
471 |
+
def __len__(self):
|
472 |
+
return self._length
|
473 |
+
|
474 |
+
def __getitem__(self, index):
|
475 |
+
example = {}
|
476 |
+
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
477 |
+
if not instance_image.mode == "RGB":
|
478 |
+
instance_image = instance_image.convert("RGB")
|
479 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
480 |
+
example["instance_prompt_ids"] = self.tokenizer(
|
481 |
+
self.instance_prompt,
|
482 |
+
truncation=True,
|
483 |
+
padding="max_length",
|
484 |
+
max_length=self.tokenizer.model_max_length,
|
485 |
+
return_tensors="pt",
|
486 |
+
).input_ids
|
487 |
+
|
488 |
+
if self.class_data_root:
|
489 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
490 |
+
if not class_image.mode == "RGB":
|
491 |
+
class_image = class_image.convert("RGB")
|
492 |
+
example["class_images"] = self.image_transforms(class_image)
|
493 |
+
example["class_prompt_ids"] = self.tokenizer(
|
494 |
+
self.class_prompt,
|
495 |
+
truncation=True,
|
496 |
+
padding="max_length",
|
497 |
+
max_length=self.tokenizer.model_max_length,
|
498 |
+
return_tensors="pt",
|
499 |
+
).input_ids
|
500 |
+
|
501 |
+
return example
|
502 |
+
|
503 |
+
|
504 |
+
def collate_fn(examples, with_prior_preservation=False):
|
505 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
506 |
+
pixel_values = [example["instance_images"] for example in examples]
|
507 |
+
|
508 |
+
# Concat class and instance examples for prior preservation.
|
509 |
+
# We do this to avoid doing two forward passes.
|
510 |
+
if with_prior_preservation:
|
511 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
512 |
+
pixel_values += [example["class_images"] for example in examples]
|
513 |
+
|
514 |
+
pixel_values = torch.stack(pixel_values)
|
515 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
516 |
+
|
517 |
+
input_ids = torch.cat(input_ids, dim=0)
|
518 |
+
|
519 |
+
batch = {
|
520 |
+
"input_ids": input_ids,
|
521 |
+
"pixel_values": pixel_values,
|
522 |
+
}
|
523 |
+
return batch
|
524 |
+
|
525 |
+
|
526 |
+
class PromptDataset(Dataset):
|
527 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
528 |
+
|
529 |
+
def __init__(self, prompt, num_samples):
|
530 |
+
self.prompt = prompt
|
531 |
+
self.num_samples = num_samples
|
532 |
+
|
533 |
+
def __len__(self):
|
534 |
+
return self.num_samples
|
535 |
+
|
536 |
+
def __getitem__(self, index):
|
537 |
+
example = {}
|
538 |
+
example["prompt"] = self.prompt
|
539 |
+
example["index"] = index
|
540 |
+
return example
|
541 |
+
|
542 |
+
|
543 |
+
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
544 |
+
if token is None:
|
545 |
+
token = HfFolder.get_token()
|
546 |
+
if organization is None:
|
547 |
+
username = whoami(token)["name"]
|
548 |
+
return f"{username}/{model_id}"
|
549 |
+
else:
|
550 |
+
return f"{organization}/{model_id}"
|
551 |
+
|
552 |
+
|
553 |
+
def main(args):
|
554 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
555 |
+
|
556 |
+
accelerator = Accelerator(
|
557 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
558 |
+
mixed_precision=args.mixed_precision,
|
559 |
+
log_with=args.report_to,
|
560 |
+
logging_dir=logging_dir,
|
561 |
+
)
|
562 |
+
|
563 |
+
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
564 |
+
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
565 |
+
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
566 |
+
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
567 |
+
raise ValueError(
|
568 |
+
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
569 |
+
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
570 |
+
)
|
571 |
+
|
572 |
+
# Make one log on every process with the configuration for debugging.
|
573 |
+
logging.basicConfig(
|
574 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
575 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
576 |
+
level=logging.INFO,
|
577 |
+
)
|
578 |
+
logger.info(accelerator.state, main_process_only=False)
|
579 |
+
if accelerator.is_local_main_process:
|
580 |
+
datasets.utils.logging.set_verbosity_warning()
|
581 |
+
transformers.utils.logging.set_verbosity_warning()
|
582 |
+
diffusers.utils.logging.set_verbosity_info()
|
583 |
+
else:
|
584 |
+
datasets.utils.logging.set_verbosity_error()
|
585 |
+
transformers.utils.logging.set_verbosity_error()
|
586 |
+
diffusers.utils.logging.set_verbosity_error()
|
587 |
+
|
588 |
+
# If passed along, set the training seed now.
|
589 |
+
if args.seed is not None:
|
590 |
+
set_seed(args.seed)
|
591 |
+
|
592 |
+
# Generate class images if prior preservation is enabled.
|
593 |
+
if args.with_prior_preservation:
|
594 |
+
class_images_dir = Path(args.class_data_dir)
|
595 |
+
if not class_images_dir.exists():
|
596 |
+
class_images_dir.mkdir(parents=True)
|
597 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
598 |
+
|
599 |
+
if cur_class_images < args.num_class_images:
|
600 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
601 |
+
if args.prior_generation_precision == "fp32":
|
602 |
+
torch_dtype = torch.float32
|
603 |
+
elif args.prior_generation_precision == "fp16":
|
604 |
+
torch_dtype = torch.float16
|
605 |
+
elif args.prior_generation_precision == "bf16":
|
606 |
+
torch_dtype = torch.bfloat16
|
607 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
608 |
+
args.pretrained_model_name_or_path,
|
609 |
+
torch_dtype=torch_dtype,
|
610 |
+
safety_checker=None,
|
611 |
+
revision=args.revision,
|
612 |
+
)
|
613 |
+
pipeline.set_progress_bar_config(disable=True)
|
614 |
+
|
615 |
+
num_new_images = args.num_class_images - cur_class_images
|
616 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
617 |
+
|
618 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
619 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
620 |
+
|
621 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
622 |
+
pipeline.to(accelerator.device)
|
623 |
+
|
624 |
+
for example in tqdm(
|
625 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
626 |
+
):
|
627 |
+
images = pipeline(example["prompt"]).images
|
628 |
+
|
629 |
+
for i, image in enumerate(images):
|
630 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
631 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
632 |
+
image.save(image_filename)
|
633 |
+
|
634 |
+
del pipeline
|
635 |
+
if torch.cuda.is_available():
|
636 |
+
torch.cuda.empty_cache()
|
637 |
+
|
638 |
+
# Handle the repository creation
|
639 |
+
if accelerator.is_main_process:
|
640 |
+
if args.push_to_hub:
|
641 |
+
if args.hub_model_id is None:
|
642 |
+
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
643 |
+
else:
|
644 |
+
repo_name = args.hub_model_id
|
645 |
+
repo = Repository(args.output_dir, clone_from=repo_name) # noqa: F841
|
646 |
+
|
647 |
+
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
648 |
+
if "step_*" not in gitignore:
|
649 |
+
gitignore.write("step_*\n")
|
650 |
+
if "epoch_*" not in gitignore:
|
651 |
+
gitignore.write("epoch_*\n")
|
652 |
+
elif args.output_dir is not None:
|
653 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
654 |
+
|
655 |
+
# Load the tokenizer
|
656 |
+
if args.tokenizer_name:
|
657 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
658 |
+
elif args.pretrained_model_name_or_path:
|
659 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
660 |
+
args.pretrained_model_name_or_path,
|
661 |
+
subfolder="tokenizer",
|
662 |
+
revision=args.revision,
|
663 |
+
use_fast=False,
|
664 |
+
)
|
665 |
+
|
666 |
+
# import correct text encoder class
|
667 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
668 |
+
|
669 |
+
# Load scheduler and models
|
670 |
+
noise_scheduler = DDPMScheduler(
|
671 |
+
beta_start=0.00085,
|
672 |
+
beta_end=0.012,
|
673 |
+
beta_schedule="scaled_linear",
|
674 |
+
num_train_timesteps=1000,
|
675 |
+
) # DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
676 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
677 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
678 |
+
)
|
679 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
|
680 |
+
unet = UNet2DConditionModel.from_pretrained(
|
681 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
682 |
+
)
|
683 |
+
|
684 |
+
if args.use_lora:
|
685 |
+
config = LoraConfig(
|
686 |
+
r=args.lora_r,
|
687 |
+
lora_alpha=args.lora_alpha,
|
688 |
+
target_modules=UNET_TARGET_MODULES,
|
689 |
+
lora_dropout=args.lora_dropout,
|
690 |
+
bias=args.lora_bias,
|
691 |
+
)
|
692 |
+
unet = LoraModel(config, unet)
|
693 |
+
print_trainable_parameters(unet)
|
694 |
+
print(unet)
|
695 |
+
|
696 |
+
vae.requires_grad_(False)
|
697 |
+
if not args.train_text_encoder:
|
698 |
+
text_encoder.requires_grad_(False)
|
699 |
+
elif args.train_text_encoder and args.use_lora:
|
700 |
+
config = LoraConfig(
|
701 |
+
r=args.lora_text_encoder_r,
|
702 |
+
lora_alpha=args.lora_text_encoder_alpha,
|
703 |
+
target_modules=TEXT_ENCODER_TARGET_MODULES,
|
704 |
+
lora_dropout=args.lora_text_encoder_dropout,
|
705 |
+
bias=args.lora_text_encoder_bias,
|
706 |
+
)
|
707 |
+
text_encoder = LoraModel(config, text_encoder)
|
708 |
+
print_trainable_parameters(text_encoder)
|
709 |
+
print(text_encoder)
|
710 |
+
|
711 |
+
if args.enable_xformers_memory_efficient_attention:
|
712 |
+
if is_xformers_available():
|
713 |
+
unet.enable_xformers_memory_efficient_attention()
|
714 |
+
else:
|
715 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
716 |
+
|
717 |
+
if args.gradient_checkpointing:
|
718 |
+
unet.enable_gradient_checkpointing()
|
719 |
+
# below fails when using lora so commenting it out
|
720 |
+
if args.train_text_encoder and not args.use_lora:
|
721 |
+
text_encoder.gradient_checkpointing_enable()
|
722 |
+
|
723 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
724 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
725 |
+
if args.allow_tf32:
|
726 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
727 |
+
|
728 |
+
if args.scale_lr:
|
729 |
+
args.learning_rate = (
|
730 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
731 |
+
)
|
732 |
+
|
733 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
734 |
+
if args.use_8bit_adam:
|
735 |
+
try:
|
736 |
+
import bitsandbytes as bnb
|
737 |
+
except ImportError:
|
738 |
+
raise ImportError(
|
739 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
740 |
+
)
|
741 |
+
|
742 |
+
optimizer_class = bnb.optim.AdamW8bit
|
743 |
+
else:
|
744 |
+
optimizer_class = torch.optim.AdamW
|
745 |
+
|
746 |
+
# Optimizer creation
|
747 |
+
params_to_optimize = (
|
748 |
+
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
|
749 |
+
)
|
750 |
+
optimizer = optimizer_class(
|
751 |
+
params_to_optimize,
|
752 |
+
lr=args.learning_rate,
|
753 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
754 |
+
weight_decay=args.adam_weight_decay,
|
755 |
+
eps=args.adam_epsilon,
|
756 |
+
)
|
757 |
+
|
758 |
+
# Dataset and DataLoaders creation:
|
759 |
+
train_dataset = DreamBoothDataset(
|
760 |
+
instance_data_root=args.instance_data_dir,
|
761 |
+
instance_prompt=args.instance_prompt,
|
762 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
763 |
+
class_prompt=args.class_prompt,
|
764 |
+
tokenizer=tokenizer,
|
765 |
+
size=args.resolution,
|
766 |
+
center_crop=args.center_crop,
|
767 |
+
)
|
768 |
+
|
769 |
+
train_dataloader = torch.utils.data.DataLoader(
|
770 |
+
train_dataset,
|
771 |
+
batch_size=args.train_batch_size,
|
772 |
+
shuffle=True,
|
773 |
+
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
774 |
+
num_workers=1,
|
775 |
+
)
|
776 |
+
|
777 |
+
# Scheduler and math around the number of training steps.
|
778 |
+
overrode_max_train_steps = False
|
779 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
780 |
+
if args.max_train_steps is None:
|
781 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
782 |
+
overrode_max_train_steps = True
|
783 |
+
|
784 |
+
lr_scheduler = get_scheduler(
|
785 |
+
args.lr_scheduler,
|
786 |
+
optimizer=optimizer,
|
787 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
788 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
789 |
+
num_cycles=args.lr_num_cycles,
|
790 |
+
power=args.lr_power,
|
791 |
+
)
|
792 |
+
|
793 |
+
# Prepare everything with our `accelerator`.
|
794 |
+
if args.train_text_encoder:
|
795 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
796 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
797 |
+
)
|
798 |
+
else:
|
799 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
800 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
801 |
+
)
|
802 |
+
|
803 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
804 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
805 |
+
weight_dtype = torch.float32
|
806 |
+
if accelerator.mixed_precision == "fp16":
|
807 |
+
weight_dtype = torch.float16
|
808 |
+
elif accelerator.mixed_precision == "bf16":
|
809 |
+
weight_dtype = torch.bfloat16
|
810 |
+
|
811 |
+
# Move vae and text_encoder to device and cast to weight_dtype
|
812 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
813 |
+
if not args.train_text_encoder:
|
814 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
815 |
+
|
816 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
817 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
818 |
+
if overrode_max_train_steps:
|
819 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
820 |
+
# Afterwards we recalculate our number of training epochs
|
821 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
822 |
+
|
823 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
824 |
+
# The trackers initializes automatically on the main process.
|
825 |
+
if accelerator.is_main_process:
|
826 |
+
accelerator.init_trackers("dreambooth", config=vars(args))
|
827 |
+
|
828 |
+
# Train!
|
829 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
830 |
+
|
831 |
+
logger.info("***** Running training *****")
|
832 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
833 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
834 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
835 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
836 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
837 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
838 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
839 |
+
global_step = 0
|
840 |
+
first_epoch = 0
|
841 |
+
|
842 |
+
# Potentially load in the weights and states from a previous save
|
843 |
+
if args.resume_from_checkpoint:
|
844 |
+
if args.resume_from_checkpoint != "latest":
|
845 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
846 |
+
else:
|
847 |
+
# Get the mos recent checkpoint
|
848 |
+
dirs = os.listdir(args.output_dir)
|
849 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
850 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
851 |
+
path = dirs[-1]
|
852 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
853 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
854 |
+
global_step = int(path.split("-")[1])
|
855 |
+
|
856 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
857 |
+
first_epoch = resume_global_step // num_update_steps_per_epoch
|
858 |
+
resume_step = resume_global_step % num_update_steps_per_epoch
|
859 |
+
|
860 |
+
# Only show the progress bar once on each machine.
|
861 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
862 |
+
progress_bar.set_description("Steps")
|
863 |
+
|
864 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
865 |
+
unet.train()
|
866 |
+
if args.train_text_encoder:
|
867 |
+
text_encoder.train()
|
868 |
+
with TorchTracemalloc() as tracemalloc:
|
869 |
+
for step, batch in enumerate(train_dataloader):
|
870 |
+
# Skip steps until we reach the resumed step
|
871 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
872 |
+
if step % args.gradient_accumulation_steps == 0:
|
873 |
+
progress_bar.update(1)
|
874 |
+
continue
|
875 |
+
|
876 |
+
with accelerator.accumulate(unet):
|
877 |
+
# Convert images to latent space
|
878 |
+
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
879 |
+
latents = latents * 0.18215
|
880 |
+
|
881 |
+
# Sample noise that we'll add to the latents
|
882 |
+
noise = torch.randn_like(latents)
|
883 |
+
bsz = latents.shape[0]
|
884 |
+
# Sample a random timestep for each image
|
885 |
+
timesteps = torch.randint(
|
886 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
|
887 |
+
)
|
888 |
+
timesteps = timesteps.long()
|
889 |
+
|
890 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
891 |
+
# (this is the forward diffusion process)
|
892 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
893 |
+
|
894 |
+
# Get the text embedding for conditioning
|
895 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
896 |
+
|
897 |
+
# Predict the noise residual
|
898 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
899 |
+
|
900 |
+
# Get the target for loss depending on the prediction type
|
901 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
902 |
+
target = noise
|
903 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
904 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
905 |
+
else:
|
906 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
907 |
+
|
908 |
+
if args.with_prior_preservation:
|
909 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
910 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
911 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
912 |
+
|
913 |
+
# Compute instance loss
|
914 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
915 |
+
|
916 |
+
# Compute prior loss
|
917 |
+
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
918 |
+
|
919 |
+
# Add the prior loss to the instance loss.
|
920 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
921 |
+
else:
|
922 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
923 |
+
|
924 |
+
accelerator.backward(loss)
|
925 |
+
if accelerator.sync_gradients:
|
926 |
+
params_to_clip = (
|
927 |
+
itertools.chain(unet.parameters(), text_encoder.parameters())
|
928 |
+
if args.train_text_encoder
|
929 |
+
else unet.parameters()
|
930 |
+
)
|
931 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
932 |
+
optimizer.step()
|
933 |
+
lr_scheduler.step()
|
934 |
+
optimizer.zero_grad()
|
935 |
+
|
936 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
937 |
+
if accelerator.sync_gradients:
|
938 |
+
progress_bar.update(1)
|
939 |
+
global_step += 1
|
940 |
+
|
941 |
+
# if global_step % args.checkpointing_steps == 0:
|
942 |
+
# if accelerator.is_main_process:
|
943 |
+
# save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
944 |
+
# accelerator.save_state(save_path)
|
945 |
+
# logger.info(f"Saved state to {save_path}")
|
946 |
+
|
947 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
948 |
+
progress_bar.set_postfix(**logs)
|
949 |
+
accelerator.log(logs, step=global_step)
|
950 |
+
|
951 |
+
if global_step >= args.max_train_steps:
|
952 |
+
break
|
953 |
+
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
|
954 |
+
accelerator.print("GPU Memory before entering the train : {}".format(b2mb(tracemalloc.begin)))
|
955 |
+
accelerator.print("GPU Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used))
|
956 |
+
accelerator.print("GPU Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked))
|
957 |
+
accelerator.print(
|
958 |
+
"GPU Total Peak Memory consumed during the train (max): {}".format(
|
959 |
+
tracemalloc.peaked + b2mb(tracemalloc.begin)
|
960 |
+
)
|
961 |
+
)
|
962 |
+
|
963 |
+
accelerator.print("CPU Memory before entering the train : {}".format(b2mb(tracemalloc.cpu_begin)))
|
964 |
+
accelerator.print("CPU Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.cpu_used))
|
965 |
+
accelerator.print("CPU Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.cpu_peaked))
|
966 |
+
accelerator.print(
|
967 |
+
"CPU Total Peak Memory consumed during the train (max): {}".format(
|
968 |
+
tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)
|
969 |
+
)
|
970 |
+
)
|
971 |
+
|
972 |
+
# Create the pipeline using using the trained modules and save it.
|
973 |
+
accelerator.wait_for_everyone()
|
974 |
+
if accelerator.is_main_process:
|
975 |
+
if args.use_lora:
|
976 |
+
lora_config = {}
|
977 |
+
state_dict = get_peft_model_state_dict(unet, state_dict=accelerator.get_state_dict(unet))
|
978 |
+
lora_config["peft_config"] = unet.get_peft_config_as_dict(inference=True)
|
979 |
+
if args.train_text_encoder:
|
980 |
+
text_encoder_state_dict = get_peft_model_state_dict(
|
981 |
+
text_encoder, state_dict=accelerator.get_state_dict(text_encoder)
|
982 |
+
)
|
983 |
+
text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()}
|
984 |
+
state_dict.update(text_encoder_state_dict)
|
985 |
+
lora_config["text_encoder_peft_config"] = text_encoder.get_peft_config_as_dict(inference=True)
|
986 |
+
|
987 |
+
accelerator.print(state_dict)
|
988 |
+
accelerator.save(state_dict, os.path.join(args.output_dir, f"{args.instance_prompt}_lora.pt"))
|
989 |
+
with open(os.path.join(args.output_dir, f"{args.instance_prompt}_lora_config.json"), "w") as f:
|
990 |
+
json.dump(lora_config, f)
|
991 |
+
else:
|
992 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
993 |
+
args.pretrained_model_name_or_path,
|
994 |
+
unet=accelerator.unwrap_model(unet),
|
995 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
996 |
+
revision=args.revision,
|
997 |
+
)
|
998 |
+
pipeline.save_pretrained(args.output_dir)
|
999 |
+
|
1000 |
+
accelerator.end_training()
|
1001 |
+
|
1002 |
+
|
1003 |
+
if __name__ == "__main__":
|
1004 |
+
args = parse_args()
|
1005 |
+
main(args)
|
trainer.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import shlex
|
6 |
+
import shutil
|
7 |
+
import subprocess
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import PIL.Image
|
11 |
+
import torch
|
12 |
+
|
13 |
+
|
14 |
+
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
|
15 |
+
w, h = image.size
|
16 |
+
if w == h:
|
17 |
+
return image
|
18 |
+
elif w > h:
|
19 |
+
new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
|
20 |
+
new_image.paste(image, (0, (w - h) // 2))
|
21 |
+
return new_image
|
22 |
+
else:
|
23 |
+
new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
|
24 |
+
new_image.paste(image, ((h - w) // 2, 0))
|
25 |
+
return new_image
|
26 |
+
|
27 |
+
|
28 |
+
class Trainer:
|
29 |
+
def __init__(self):
|
30 |
+
self.is_running = False
|
31 |
+
self.is_running_message = "Another training is in progress."
|
32 |
+
|
33 |
+
self.output_dir = pathlib.Path("results")
|
34 |
+
self.instance_data_dir = self.output_dir / "training_data"
|
35 |
+
|
36 |
+
def check_if_running(self) -> dict:
|
37 |
+
if self.is_running:
|
38 |
+
return gr.update(value=self.is_running_message)
|
39 |
+
else:
|
40 |
+
return gr.update(value="No training is running.")
|
41 |
+
|
42 |
+
def cleanup_dirs(self) -> None:
|
43 |
+
shutil.rmtree(self.output_dir, ignore_errors=True)
|
44 |
+
|
45 |
+
def prepare_dataset(self, concept_images: list, resolution: int) -> None:
|
46 |
+
self.instance_data_dir.mkdir(parents=True)
|
47 |
+
for i, temp_path in enumerate(concept_images):
|
48 |
+
image = PIL.Image.open(temp_path.name)
|
49 |
+
image = pad_image(image)
|
50 |
+
image = image.resize((resolution, resolution))
|
51 |
+
image = image.convert("RGB")
|
52 |
+
out_path = self.instance_data_dir / f"{i:03d}.jpg"
|
53 |
+
image.save(out_path, format="JPEG", quality=100)
|
54 |
+
|
55 |
+
def run(
|
56 |
+
self,
|
57 |
+
base_model: str,
|
58 |
+
resolution_s: str,
|
59 |
+
n_steps: int,
|
60 |
+
concept_images: list | None,
|
61 |
+
concept_prompt: str,
|
62 |
+
learning_rate: float,
|
63 |
+
gradient_accumulation: int,
|
64 |
+
fp16: bool,
|
65 |
+
use_8bit_adam: bool,
|
66 |
+
gradient_checkpointing: bool,
|
67 |
+
train_text_encoder: bool,
|
68 |
+
with_prior_preservation: bool,
|
69 |
+
prior_loss_weight: float,
|
70 |
+
class_prompt: str,
|
71 |
+
num_class_images: int,
|
72 |
+
lora_r: int,
|
73 |
+
lora_alpha: int,
|
74 |
+
lora_bias: str,
|
75 |
+
lora_dropout: float,
|
76 |
+
lora_text_encoder_r: int,
|
77 |
+
lora_text_encoder_alpha: int,
|
78 |
+
lora_text_encoder_bias: str,
|
79 |
+
lora_text_encoder_dropout: float,
|
80 |
+
) -> tuple[dict, list[pathlib.Path]]:
|
81 |
+
if not torch.cuda.is_available():
|
82 |
+
raise gr.Error("CUDA is not available.")
|
83 |
+
|
84 |
+
if self.is_running:
|
85 |
+
return gr.update(value=self.is_running_message), []
|
86 |
+
|
87 |
+
if concept_images is None:
|
88 |
+
raise gr.Error("You need to upload images.")
|
89 |
+
if not concept_prompt:
|
90 |
+
raise gr.Error("The concept prompt is missing.")
|
91 |
+
|
92 |
+
resolution = int(resolution_s)
|
93 |
+
|
94 |
+
self.cleanup_dirs()
|
95 |
+
self.prepare_dataset(concept_images, resolution)
|
96 |
+
|
97 |
+
command = f"""
|
98 |
+
accelerate launch train_dreambooth.py \
|
99 |
+
--pretrained_model_name_or_path={base_model} \
|
100 |
+
--instance_data_dir={self.instance_data_dir} \
|
101 |
+
--output_dir={self.output_dir} \
|
102 |
+
--train_text_encoder \
|
103 |
+
--instance_prompt="{concept_prompt}" \
|
104 |
+
--resolution={resolution} \
|
105 |
+
--gradient_accumulation_steps={gradient_accumulation} \
|
106 |
+
--learning_rate={learning_rate} \
|
107 |
+
--max_train_steps={n_steps} \
|
108 |
+
--train_batch_size=1 \
|
109 |
+
--lr_scheduler=constant \
|
110 |
+
--lr_warmup_steps=0 \
|
111 |
+
--num_class_images={num_class_images} \
|
112 |
+
"""
|
113 |
+
if train_text_encoder:
|
114 |
+
command += f" --train_text_encoder"
|
115 |
+
if with_prior_preservation:
|
116 |
+
command += f""" --with_prior_preservation \
|
117 |
+
--prior_loss_weight={prior_loss_weight} \
|
118 |
+
--class_prompt="{class_prompt}" \
|
119 |
+
--class_data_dir={self.output_dir / 'class_data'}
|
120 |
+
"""
|
121 |
+
|
122 |
+
command += f""" --use_lora \
|
123 |
+
--lora_r={lora_r} \
|
124 |
+
--lora_alpha={lora_alpha} \
|
125 |
+
--lora_bias={lora_bias} \
|
126 |
+
--lora_dropout={lora_dropout}
|
127 |
+
"""
|
128 |
+
|
129 |
+
if train_text_encoder:
|
130 |
+
command += f""" --lora_text_encoder_r={lora_text_encoder_r} \
|
131 |
+
--lora_text_encoder_alpha={lora_text_encoder_alpha} \
|
132 |
+
--lora_text_encoder_bias={lora_text_encoder_bias} \
|
133 |
+
--lora_text_encoder_dropout={lora_text_encoder_dropout}
|
134 |
+
"""
|
135 |
+
if fp16:
|
136 |
+
command += " --mixed_precision fp16"
|
137 |
+
if use_8bit_adam:
|
138 |
+
command += " --use_8bit_adam"
|
139 |
+
if gradient_checkpointing:
|
140 |
+
command += " --gradient_checkpointing"
|
141 |
+
|
142 |
+
with open(self.output_dir / "train.sh", "w") as f:
|
143 |
+
command_s = " ".join(command.split())
|
144 |
+
f.write(command_s)
|
145 |
+
|
146 |
+
self.is_running = True
|
147 |
+
res = subprocess.run(shlex.split(command))
|
148 |
+
self.is_running = False
|
149 |
+
|
150 |
+
if res.returncode == 0:
|
151 |
+
result_message = "Training Completed!"
|
152 |
+
else:
|
153 |
+
result_message = "Training Failed!"
|
154 |
+
weight_paths = sorted(self.output_dir.glob("*.pt"))
|
155 |
+
config_paths = sorted(self.output_dir.glob("*.json"))
|
156 |
+
return gr.update(value=result_message), weight_paths + config_paths
|
uploader.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
|
4 |
+
|
5 |
+
def upload(model_name: str, hf_token: str) -> None:
|
6 |
+
api = HfApi(token=hf_token)
|
7 |
+
user_name = api.whoami()["name"]
|
8 |
+
model_id = f"{user_name}/{model_name}"
|
9 |
+
try:
|
10 |
+
api.create_repo(model_id, repo_type="model", private=True)
|
11 |
+
api.upload_folder(repo_id=model_id, folder_path="results", path_in_repo="results", repo_type="model")
|
12 |
+
url = f"https://huggingface.co/{model_id}"
|
13 |
+
message = f"Your model was successfully uploaded to [{url}]({url})."
|
14 |
+
except Exception as e:
|
15 |
+
message = str(e)
|
16 |
+
|
17 |
+
return gr.update(value=message, visible=True)
|