File size: 14,504 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import json
from typing import Any, Dict, List, Union

from swarms.utils.lazy_loader import lazy_import_decorator
from pydantic import BaseModel
from swarms.tools.logits_processor import (
    NumberStoppingCriteria,
    OutputNumbersTokens,
    StringStoppingCriteria,
)
from swarm_models.base_llm import BaseLLM
from swarms.utils.auto_download_check_packages import (
    auto_check_and_download_package,
)

try:
    import transformers
except ImportError:
    auto_check_and_download_package(
        "transformers", package_manager="pip"
    )
    import transformers


GENERATION_MARKER = "|GENERATION|"


@lazy_import_decorator
class Jsonformer:
    """
    Initializes the FormatTools class.

    Args:
        model (PreTrainedModel): The pre-trained model.
        tokenizer (PreTrainedTokenizer): The tokenizer for the model.
        json_schema (Dict[str, Any]): The JSON schema.
        prompt (str): The prompt for generation.

    Keyword Args:
        debug (bool, optional): Whether to enable debug mode. Defaults to False.
        max_array_length (int, optional): The maximum length of an array. Defaults to 10.
        max_number_tokens (int, optional): The maximum number of tokens for numbers. Defaults to 6.
        temperature (float, optional): The temperature for generation. Defaults to 1.0.
        max_string_token_length (int, optional): The maximum length of a string token. Defaults to 10.
    """

    value: Dict[str, Any] = {}

    def __init__(
        self,
        model: transformers.PreTrainedModel = None,  # type: ignore
        tokenizer: transformers.PreTrainedTokenizer = None,  # type: ignore
        json_schema: Union[Dict[str, Any], BaseModel] = None,
        schemas: List[Union[Dict[str, Any], BaseModel]] = [],
        prompt: str = None,
        *,
        debug: bool = False,
        max_array_length: int = 10,
        max_number_tokens: int = 6,
        temperature: float = 1.0,
        max_string_token_length: int = 10,
        llm: BaseLLM = None,
    ):
        self.model = model
        self.tokenizer = tokenizer
        self.json_schema = json_schema
        self.prompt = prompt
        self.llm = llm
        self.schemas = schemas

        self.number_logit_processor = OutputNumbersTokens(
            self.tokenizer, self.prompt
        )

        self.generation_marker = "|GENERATION|"
        self.debug_on = debug
        self.max_array_length = max_array_length

        self.max_number_tokens = max_number_tokens
        self.temperature = temperature
        self.max_string_token_length = max_string_token_length

    def generate_number(
        self, temperature: Union[float, None] = None, iterations=0
    ):
        """
        Generates a number based on the given prompt.

        Args:
            temperature (float, optional): The temperature value for number generation. Defaults to None.
            iterations (int, optional): The number of iterations for generating a valid number. Defaults to 0.

        Returns:
            float: The generated number.

        Raises:
            ValueError: If a valid number cannot be generated after 3 iterations.
        """
        if self.model:
            prompt = self.get_prompt()
            self.debug("[generate_number]", prompt, is_prompt=True)
            input_tokens = self.tokenizer.encode(
                prompt, return_tensors="pt"
            ).to(self.model.device)

            response = self.model.generate(
                input_tokens,
                max_new_tokens=self.max_number_tokens,
                num_return_sequences=1,
                logits_processor=[self.number_logit_processor],
                stopping_criteria=[
                    NumberStoppingCriteria(
                        self.tokenizer, len(input_tokens[0])
                    )
                ],
                temperature=temperature or self.temperature,
                pad_token_id=self.tokenizer.eos_token_id,
            )
            response = self.tokenizer.decode(
                response[0], skip_special_tokens=True
            )

            response = response[len(prompt) :]
            response = response.strip().rstrip(".")
            self.debug("[generate_number]", response)
            try:
                return float(response)
            except ValueError:
                if iterations > 3:
                    raise ValueError(
                        "Failed to generate a valid number"
                    )

                return self.generate_number(
                    temperature=self.temperature * 1.3,
                    iterations=iterations + 1,
                )
        elif self.llm:
            prompt = self.get_prompt()
            self.debug("[generate_number]", prompt, is_prompt=True)
            response = self.llm(prompt)
            response = response[len(prompt) :]
            response = response.strip().rstrip(".")
            self.debug("[generate_number]", response)
            try:
                return float(response)
            except ValueError:
                if iterations > 3:
                    raise ValueError(
                        "Failed to generate a valid number"
                    )

                return self.generate_number(
                    temperature=self.temperature * 1.3,
                    iterations=iterations + 1,
                )

        elif self.llm and self.model:
            raise ValueError("Both LLM and model cannot be None")

    def generate_boolean(self) -> bool:
        """
        Generates a boolean value based on the given prompt.

        Returns:
            bool: The generated boolean value.
        """
        if self.model:
            prompt = self.get_prompt()
            self.debug("[generate_boolean]", prompt, is_prompt=True)

            input_tensor = self.tokenizer.encode(
                prompt, return_tensors="pt"
            )
            output = self.model.forward(
                input_tensor.to(self.model.device)
            )
            logits = output.logits[0, -1]

            # todo: this assumes that "true" and "false" are both tokenized to a single token
            # this is probably not true for all tokenizers
            # this can be fixed by looking at only the first token of both "true" and "false"
            true_token_id = self.tokenizer.convert_tokens_to_ids(
                "true"
            )
            false_token_id = self.tokenizer.convert_tokens_to_ids(
                "false"
            )

            result = logits[true_token_id] > logits[false_token_id]

            self.debug("[generate_boolean]", result)

            return result.item()

        elif self.llm:
            prompt = self.get_prompt()
            self.debug("[generate_boolean]", prompt, is_prompt=True)

            output = self.llm(prompt)

            return output if output == "true" or "false" else None

        else:
            raise ValueError("Both LLM and model cannot be None")

    def generate_string(self) -> str:
        if self.model:
            prompt = self.get_prompt() + '"'
            self.debug("[generate_string]", prompt, is_prompt=True)
            input_tokens = self.tokenizer.encode(
                prompt, return_tensors="pt"
            ).to(self.model.device)

            response = self.model.generate(
                input_tokens,
                max_new_tokens=self.max_string_token_length,
                num_return_sequences=1,
                temperature=self.temperature,
                stopping_criteria=[
                    StringStoppingCriteria(
                        self.tokenizer, len(input_tokens[0])
                    )
                ],
                pad_token_id=self.tokenizer.eos_token_id,
            )

            # Some models output the prompt as part of the response
            # This removes the prompt from the response if it is present
            if (
                len(response[0]) >= len(input_tokens[0])
                and (
                    response[0][: len(input_tokens[0])]
                    == input_tokens
                ).all()
            ):
                response = response[0][len(input_tokens[0]) :]
            if response.shape[0] == 1:
                response = response[0]

            response = self.tokenizer.decode(
                response, skip_special_tokens=True
            )

            self.debug("[generate_string]", "|" + response + "|")

            if response.count('"') < 1:
                return response

            return response.split('"')[0].strip()

        elif self.llm:
            prompt = self.get_prompt() + '"'
            self.debug("[generate_string]", prompt, is_prompt=True)

            response = self.llm(prompt)

            # Some models output the prompt as part of the response
            # This removes the prompt from the response if it is present
            if (
                len(response[0]) >= len(input_tokens[0])
                and (
                    response[0][: len(input_tokens[0])]
                    == input_tokens
                ).all()
            ):
                response = response[0][len(input_tokens[0]) :]
            if response.shape[0] == 1:
                response = response[0]

            self.debug("[generate_string]", "|" + response + "|")

            if response.count('"') < 1:
                return response

            return response.split('"')[0].strip()

        else:
            raise ValueError("Both LLM and model cannot be None")

    def generate_object(
        self, properties: Dict[str, Any], obj: Dict[str, Any]
    ) -> Dict[str, Any]:
        for key, schema in properties.items():
            self.debug("[generate_object] generating value for", key)
            obj[key] = self.generate_value(schema, obj, key)
        return obj

    def generate_value(
        self,
        schema: Dict[str, Any],
        obj: Union[Dict[str, Any], List[Any]],
        key: Union[str, None] = None,
    ) -> Any:
        schema_type = schema["type"]
        if schema_type == "number":
            if key:
                obj[key] = self.generation_marker
            else:
                obj.append(self.generation_marker)
            return self.generate_number()
        elif schema_type == "boolean":
            if key:
                obj[key] = self.generation_marker
            else:
                obj.append(self.generation_marker)
            return self.generate_boolean()
        elif schema_type == "string":
            if key:
                obj[key] = self.generation_marker
            else:
                obj.append(self.generation_marker)
            return self.generate_string()
        elif schema_type == "array":
            new_array = []
            obj[key] = new_array
            return self.generate_array(schema["items"], new_array)
        elif schema_type == "object":
            new_obj = {}
            if key:
                obj[key] = new_obj
            else:
                obj.append(new_obj)
            return self.generate_object(schema["properties"], new_obj)
        else:
            raise ValueError(
                f"Unsupported schema type: {schema_type}"
            )

    def generate_array(
        self, item_schema: Dict[str, Any], obj: Dict[str, Any]
    ) -> list:
        if self.model:
            for _ in range(self.max_array_length):
                # forces array to have at least one element
                element = self.generate_value(item_schema, obj)
                obj[-1] = element

                obj.append(self.generation_marker)
                input_prompt = self.get_prompt()
                obj.pop()
                input_tensor = self.tokenizer.encode(
                    input_prompt, return_tensors="pt"
                )
                output = self.model.forward(
                    input_tensor.to(self.model.device)
                )
                logits = output.logits[0, -1]

                top_indices = logits.topk(30).indices
                sorted_token_ids = top_indices[
                    logits[top_indices].argsort(descending=True)
                ]

                found_comma = False
                found_close_bracket = False

                for token_id in sorted_token_ids:
                    decoded_token = self.tokenizer.decode(token_id)
                    if "," in decoded_token:
                        found_comma = True
                        break
                    if "]" in decoded_token:
                        found_close_bracket = True
                        break

                if found_close_bracket or not found_comma:
                    break

            return obj

        elif self.llm:
            for _ in range(self.max_array_length):
                # forces array to have at least one element
                element = self.generate_value(item_schema, obj)
                obj[-1] = element

                obj.append(self.generation_marker)
                input_prompt = self.get_prompt()
                obj.pop()
                output = self.llm(input_prompt)

                found_comma = False
                found_close_bracket = False

                for token_id in output:
                    decoded_token = str(token_id)
                    if "," in decoded_token:
                        found_comma = True
                        break
                    if "]" in decoded_token:
                        found_close_bracket = True
                        break

                if found_close_bracket or not found_comma:
                    break

            return obj

    def get_prompt(self):
        template = """{prompt}\nOutput result in the following JSON schema format:\n{schema}\nResult: {progress}"""
        progress = json.dumps(self.value)
        gen_marker_index = progress.find(
            f'"{self.generation_marker}"'
        )
        if gen_marker_index != -1:
            progress = progress[:gen_marker_index]
        else:
            raise ValueError("Failed to find generation marker")

        prompt = template.format(
            prompt=self.prompt,
            schema=json.dumps(self.json_schema),
            progress=progress,
        )

        return prompt

    def __call__(self) -> Dict[str, Any]:
        self.value = {}
        generated_data = self.generate_object(
            self.json_schema["properties"], self.value
        )
        return generated_data