Spaces:
Running
Running
from loguru import logger | |
from swarms.structs.agent import Agent | |
from swarms.structs.graph_swarm import GraphSwarm | |
if __name__ == "__main__": | |
try: | |
# Create agents | |
data_collector = Agent( | |
agent_name="Market-Data-Collector", | |
model_name="openai/gpt-4o", | |
max_loops=1, | |
streaming_on=True, | |
) | |
trend_analyzer = Agent( | |
agent_name="Market-Trend-Analyzer", | |
model_name="openai/gpt-4o", | |
max_loops=1, | |
streaming_on=True, | |
) | |
report_generator = Agent( | |
agent_name="Investment-Report-Generator", | |
model_name="openai/gpt-4o", | |
max_loops=1, | |
streaming_on=True, | |
) | |
# Create swarm | |
swarm = GraphSwarm( | |
agents=[ | |
(data_collector, []), | |
(trend_analyzer, ["Market-Data-Collector"]), | |
(report_generator, ["Market-Trend-Analyzer"]), | |
], | |
swarm_name="Market Analysis Intelligence Network", | |
) | |
# Run the swarm | |
result = swarm.run( | |
"Analyze current market trends for tech stocks and provide investment recommendations" | |
) | |
# Print results | |
print(f"Execution success: {result.success}") | |
print(f"Total time: {result.execution_time:.2f} seconds") | |
for agent_name, output in result.outputs.items(): | |
print(f"\nAgent: {agent_name}") | |
print(f"Output: {output.output}") | |
if output.error: | |
print(f"Error: {output.error}") | |
except Exception as error: | |
logger.error(error) | |
raise error | |