Swarms / swarms /agents /tool_agent.py
harshalmore31's picture
Synced repo using 'sync_with_huggingface' Github Action
d8d14f1 verified
raw
history blame
5.17 kB
from typing import Any, Optional, Callable
from swarms.tools.json_former import Jsonformer
from swarms.utils.loguru_logger import initialize_logger
from swarms.utils.lazy_loader import lazy_import_decorator
logger = initialize_logger(log_folder="tool_agent")
@lazy_import_decorator
class ToolAgent:
"""
Represents a tool agent that performs a specific task using a model and tokenizer.
Args:
name (str): The name of the tool agent.
description (str): A description of the tool agent.
model (Any): The model used by the tool agent.
tokenizer (Any): The tokenizer used by the tool agent.
json_schema (Any): The JSON schema used by the tool agent.
*args: Variable length arguments.
**kwargs: Keyword arguments.
Attributes:
name (str): The name of the tool agent.
description (str): A description of the tool agent.
model (Any): The model used by the tool agent.
tokenizer (Any): The tokenizer used by the tool agent.
json_schema (Any): The JSON schema used by the tool agent.
Methods:
run: Runs the tool agent for a specific task.
Raises:
Exception: If an error occurs while running the tool agent.
Example:
from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms import ToolAgent
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
json_schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number"},
"is_student": {"type": "boolean"},
"courses": {
"type": "array",
"items": {"type": "string"}
}
}
}
task = "Generate a person's information based on the following schema:"
agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
generated_data = agent.run(task)
print(generated_data)
"""
def __init__(
self,
name: str = "Function Calling Agent",
description: str = "Generates a function based on the input json schema and the task",
model: Any = None,
tokenizer: Any = None,
json_schema: Any = None,
max_number_tokens: int = 500,
parsing_function: Optional[Callable] = None,
llm: Any = None,
*args,
**kwargs,
):
super().__init__(
agent_name=name,
agent_description=description,
llm=llm,
**kwargs,
)
self.name = name
self.description = description
self.model = model
self.tokenizer = tokenizer
self.json_schema = json_schema
self.max_number_tokens = max_number_tokens
self.parsing_function = parsing_function
def run(self, task: str, *args, **kwargs):
"""
Run the tool agent for the specified task.
Args:
task (str): The task to be performed by the tool agent.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
The output of the tool agent.
Raises:
Exception: If an error occurs during the execution of the tool agent.
"""
try:
if self.model:
logger.info(f"Running {self.name} for task: {task}")
self.toolagent = Jsonformer(
model=self.model,
tokenizer=self.tokenizer,
json_schema=self.json_schema,
llm=self.llm,
prompt=task,
max_number_tokens=self.max_number_tokens,
*args,
**kwargs,
)
if self.parsing_function:
out = self.parsing_function(self.toolagent())
else:
out = self.toolagent()
return out
elif self.llm:
logger.info(f"Running {self.name} for task: {task}")
self.toolagent = Jsonformer(
json_schema=self.json_schema,
llm=self.llm,
prompt=task,
max_number_tokens=self.max_number_tokens,
*args,
**kwargs,
)
if self.parsing_function:
out = self.parsing_function(self.toolagent())
else:
out = self.toolagent()
return out
else:
raise Exception(
"Either model or llm should be provided to the"
" ToolAgent"
)
except Exception as error:
logger.error(
f"Error running {self.name} for task: {task}"
)
raise error
def __call__(self, task: str, *args, **kwargs):
return self.run(task, *args, **kwargs)