Spaces:
Running
Running
from typing import Any, Optional, Callable | |
from swarms.tools.json_former import Jsonformer | |
from swarms.utils.loguru_logger import initialize_logger | |
from swarms.utils.lazy_loader import lazy_import_decorator | |
logger = initialize_logger(log_folder="tool_agent") | |
class ToolAgent: | |
""" | |
Represents a tool agent that performs a specific task using a model and tokenizer. | |
Args: | |
name (str): The name of the tool agent. | |
description (str): A description of the tool agent. | |
model (Any): The model used by the tool agent. | |
tokenizer (Any): The tokenizer used by the tool agent. | |
json_schema (Any): The JSON schema used by the tool agent. | |
*args: Variable length arguments. | |
**kwargs: Keyword arguments. | |
Attributes: | |
name (str): The name of the tool agent. | |
description (str): A description of the tool agent. | |
model (Any): The model used by the tool agent. | |
tokenizer (Any): The tokenizer used by the tool agent. | |
json_schema (Any): The JSON schema used by the tool agent. | |
Methods: | |
run: Runs the tool agent for a specific task. | |
Raises: | |
Exception: If an error occurs while running the tool agent. | |
Example: | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from swarms import ToolAgent | |
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b") | |
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b") | |
json_schema = { | |
"type": "object", | |
"properties": { | |
"name": {"type": "string"}, | |
"age": {"type": "number"}, | |
"is_student": {"type": "boolean"}, | |
"courses": { | |
"type": "array", | |
"items": {"type": "string"} | |
} | |
} | |
} | |
task = "Generate a person's information based on the following schema:" | |
agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema) | |
generated_data = agent.run(task) | |
print(generated_data) | |
""" | |
def __init__( | |
self, | |
name: str = "Function Calling Agent", | |
description: str = "Generates a function based on the input json schema and the task", | |
model: Any = None, | |
tokenizer: Any = None, | |
json_schema: Any = None, | |
max_number_tokens: int = 500, | |
parsing_function: Optional[Callable] = None, | |
llm: Any = None, | |
*args, | |
**kwargs, | |
): | |
super().__init__( | |
agent_name=name, | |
agent_description=description, | |
llm=llm, | |
**kwargs, | |
) | |
self.name = name | |
self.description = description | |
self.model = model | |
self.tokenizer = tokenizer | |
self.json_schema = json_schema | |
self.max_number_tokens = max_number_tokens | |
self.parsing_function = parsing_function | |
def run(self, task: str, *args, **kwargs): | |
""" | |
Run the tool agent for the specified task. | |
Args: | |
task (str): The task to be performed by the tool agent. | |
*args: Variable length argument list. | |
**kwargs: Arbitrary keyword arguments. | |
Returns: | |
The output of the tool agent. | |
Raises: | |
Exception: If an error occurs during the execution of the tool agent. | |
""" | |
try: | |
if self.model: | |
logger.info(f"Running {self.name} for task: {task}") | |
self.toolagent = Jsonformer( | |
model=self.model, | |
tokenizer=self.tokenizer, | |
json_schema=self.json_schema, | |
llm=self.llm, | |
prompt=task, | |
max_number_tokens=self.max_number_tokens, | |
*args, | |
**kwargs, | |
) | |
if self.parsing_function: | |
out = self.parsing_function(self.toolagent()) | |
else: | |
out = self.toolagent() | |
return out | |
elif self.llm: | |
logger.info(f"Running {self.name} for task: {task}") | |
self.toolagent = Jsonformer( | |
json_schema=self.json_schema, | |
llm=self.llm, | |
prompt=task, | |
max_number_tokens=self.max_number_tokens, | |
*args, | |
**kwargs, | |
) | |
if self.parsing_function: | |
out = self.parsing_function(self.toolagent()) | |
else: | |
out = self.toolagent() | |
return out | |
else: | |
raise Exception( | |
"Either model or llm should be provided to the" | |
" ToolAgent" | |
) | |
except Exception as error: | |
logger.error( | |
f"Error running {self.name} for task: {task}" | |
) | |
raise error | |
def __call__(self, task: str, *args, **kwargs): | |
return self.run(task, *args, **kwargs) | |