Spaces:
Running
Running
import json | |
import os | |
from unittest import mock | |
from unittest.mock import MagicMock, patch | |
import pytest | |
from dotenv import load_dotenv | |
from swarm_models import OpenAIChat | |
from swarms.structs.agent import Agent, stop_when_repeats | |
from swarms.utils.loguru_logger import logger | |
load_dotenv() | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
# Mocks and Fixtures | |
def mocked_llm(): | |
return OpenAIChat( | |
openai_api_key=openai_api_key, | |
) | |
def basic_flow(mocked_llm): | |
return Agent(llm=mocked_llm, max_loops=5) | |
def flow_with_condition(mocked_llm): | |
return Agent( | |
llm=mocked_llm, | |
max_loops=5, | |
stopping_condition=stop_when_repeats, | |
) | |
# Basic Tests | |
def test_stop_when_repeats(): | |
assert stop_when_repeats("Please Stop now") | |
assert not stop_when_repeats("Continue the process") | |
def test_flow_initialization(basic_flow): | |
assert basic_flow.max_loops == 5 | |
assert basic_flow.stopping_condition is None | |
assert basic_flow.loop_interval == 1 | |
assert basic_flow.retry_attempts == 3 | |
assert basic_flow.retry_interval == 1 | |
assert basic_flow.feedback == [] | |
assert basic_flow.memory == [] | |
assert basic_flow.task is None | |
assert basic_flow.stopping_token == "<DONE>" | |
assert not basic_flow.interactive | |
def test_provide_feedback(basic_flow): | |
feedback = "Test feedback" | |
basic_flow.provide_feedback(feedback) | |
assert feedback in basic_flow.feedback | |
# to speed up tests | |
def test_run_without_stopping_condition(mocked_sleep, basic_flow): | |
response = basic_flow.run("Test task") | |
assert ( | |
response == "Test task" | |
) # since our mocked llm doesn't modify the response | |
# to speed up tests | |
def test_run_with_stopping_condition( | |
mocked_sleep, flow_with_condition | |
): | |
response = flow_with_condition.run("Stop") | |
assert response == "Stop" | |
# to speed up tests | |
def test_run_with_exception(mocked_sleep, basic_flow): | |
basic_flow.llm.side_effect = Exception("Test Exception") | |
with pytest.raises(Exception, match="Test Exception"): | |
basic_flow.run("Test task") | |
def test_bulk_run(basic_flow): | |
inputs = [{"task": "Test1"}, {"task": "Test2"}] | |
responses = basic_flow.bulk_run(inputs) | |
assert responses == ["Test1", "Test2"] | |
# Tests involving file IO | |
def test_save_and_load(basic_flow, tmp_path): | |
file_path = tmp_path / "memory.json" | |
basic_flow.memory.append(["Test1", "Test2"]) | |
basic_flow.save(file_path) | |
new_flow = Agent(llm=mocked_llm, max_loops=5) | |
new_flow.load(file_path) | |
assert new_flow.memory == [["Test1", "Test2"]] | |
# Environment variable mock test | |
def test_env_variable_handling(monkeypatch): | |
monkeypatch.setenv("API_KEY", "test_key") | |
assert os.getenv("API_KEY") == "test_key" | |
# TODO: Add more tests, especially edge cases and exception cases. Implement parametrized tests for varied inputs. | |
# Test initializing the agent with different stopping conditions | |
def test_flow_with_custom_stopping_condition(mocked_llm): | |
def stopping_condition(x): | |
return "terminate" in x.lower() | |
agent = Agent( | |
llm=mocked_llm, | |
max_loops=5, | |
stopping_condition=stopping_condition, | |
) | |
assert agent.stopping_condition("Please terminate now") | |
assert not agent.stopping_condition("Continue the process") | |
# Test calling the agent directly | |
def test_flow_call(basic_flow): | |
response = basic_flow("Test call") | |
assert response == "Test call" | |
# Test formatting the prompt | |
def test_format_prompt(basic_flow): | |
formatted_prompt = basic_flow.format_prompt( | |
"Hello {name}", name="John" | |
) | |
assert formatted_prompt == "Hello John" | |
# Test with max loops | |
def test_max_loops(mocked_sleep, basic_flow): | |
basic_flow.max_loops = 3 | |
response = basic_flow.run("Looping") | |
assert response == "Looping" | |
# Test stopping token | |
def test_stopping_token(mocked_sleep, basic_flow): | |
basic_flow.stopping_token = "Terminate" | |
response = basic_flow.run("Loop until Terminate") | |
assert response == "Loop until Terminate" | |
# Test interactive mode | |
def test_interactive_mode(basic_flow): | |
basic_flow.interactive = True | |
assert basic_flow.interactive | |
# Test bulk run with varied inputs | |
def test_bulk_run_varied_inputs(basic_flow): | |
inputs = [ | |
{"task": "Test1"}, | |
{"task": "Test2"}, | |
{"task": "Stop now"}, | |
] | |
responses = basic_flow.bulk_run(inputs) | |
assert responses == ["Test1", "Test2", "Stop now"] | |
# Test loading non-existent file | |
def test_load_non_existent_file(basic_flow, tmp_path): | |
file_path = tmp_path / "non_existent.json" | |
with pytest.raises(FileNotFoundError): | |
basic_flow.load(file_path) | |
# Test saving with different memory data | |
def test_save_different_memory(basic_flow, tmp_path): | |
file_path = tmp_path / "memory.json" | |
basic_flow.memory.append(["Task1", "Task2", "Task3"]) | |
basic_flow.save(file_path) | |
with open(file_path) as f: | |
data = json.load(f) | |
assert data == [["Task1", "Task2", "Task3"]] | |
# Test the stopping condition check | |
def test_check_stopping_condition(flow_with_condition): | |
assert flow_with_condition._check_stopping_condition( | |
"Stop this process" | |
) | |
assert not flow_with_condition._check_stopping_condition( | |
"Continue the task" | |
) | |
# Test without providing max loops (default value should be 5) | |
def test_default_max_loops(mocked_llm): | |
agent = Agent(llm=mocked_llm) | |
assert agent.max_loops == 5 | |
# Test creating agent from llm and template | |
def test_from_llm_and_template(mocked_llm): | |
agent = Agent.from_llm_and_template(mocked_llm, "Test template") | |
assert isinstance(agent, Agent) | |
# Mocking the OpenAIChat for testing | |
def test_mocked_openai_chat(MockedOpenAIChat): | |
llm = MockedOpenAIChat(openai_api_key=openai_api_key) | |
llm.return_value = MagicMock() | |
agent = Agent(llm=llm, max_loops=5) | |
agent.run("Mocked run") | |
assert MockedOpenAIChat.called | |
# Test retry attempts | |
def test_retry_attempts(mocked_sleep, basic_flow): | |
basic_flow.retry_attempts = 2 | |
basic_flow.llm.side_effect = [ | |
Exception("Test Exception"), | |
"Valid response", | |
] | |
response = basic_flow.run("Test retry") | |
assert response == "Valid response" | |
# Test different loop intervals | |
def test_different_loop_intervals(mocked_sleep, basic_flow): | |
basic_flow.loop_interval = 2 | |
response = basic_flow.run("Test loop interval") | |
assert response == "Test loop interval" | |
# Test different retry intervals | |
def test_different_retry_intervals(mocked_sleep, basic_flow): | |
basic_flow.retry_interval = 2 | |
response = basic_flow.run("Test retry interval") | |
assert response == "Test retry interval" | |
# Test invoking the agent with additional kwargs | |
def test_flow_call_with_kwargs(mocked_sleep, basic_flow): | |
response = basic_flow( | |
"Test call", param1="value1", param2="value2" | |
) | |
assert response == "Test call" | |
# Test initializing the agent with all parameters | |
def test_flow_initialization_all_params(mocked_llm): | |
agent = Agent( | |
llm=mocked_llm, | |
max_loops=10, | |
stopping_condition=stop_when_repeats, | |
loop_interval=2, | |
retry_attempts=4, | |
retry_interval=2, | |
interactive=True, | |
param1="value1", | |
param2="value2", | |
) | |
assert agent.max_loops == 10 | |
assert agent.loop_interval == 2 | |
assert agent.retry_attempts == 4 | |
assert agent.retry_interval == 2 | |
assert agent.interactive | |
# Test the stopping token is in the response | |
def test_stopping_token_in_response(mocked_sleep, basic_flow): | |
response = basic_flow.run("Test stopping token") | |
assert basic_flow.stopping_token in response | |
def flow_instance(): | |
# Create an instance of the Agent class with required parameters for testing | |
# You may need to adjust this based on your actual class initialization | |
llm = OpenAIChat( | |
openai_api_key=openai_api_key, | |
) | |
agent = Agent( | |
llm=llm, | |
max_loops=5, | |
interactive=False, | |
dashboard=False, | |
dynamic_temperature=False, | |
) | |
return agent | |
def test_flow_run(flow_instance): | |
# Test the basic run method of the Agent class | |
response = flow_instance.run("Test task") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
def test_flow_interactive_mode(flow_instance): | |
# Test the interactive mode of the Agent class | |
flow_instance.interactive = True | |
response = flow_instance.run("Test task") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
def test_flow_dashboard_mode(flow_instance): | |
# Test the dashboard mode of the Agent class | |
flow_instance.dashboard = True | |
response = flow_instance.run("Test task") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
def test_flow_autosave(flow_instance): | |
# Test the autosave functionality of the Agent class | |
flow_instance.autosave = True | |
response = flow_instance.run("Test task") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
# Ensure that the state is saved (you may need to implement this logic) | |
assert flow_instance.saved_state_path is not None | |
def test_flow_response_filtering(flow_instance): | |
# Test the response filtering functionality | |
flow_instance.add_response_filter("filter_this") | |
response = flow_instance.filtered_run( | |
"This message should filter_this" | |
) | |
assert "filter_this" not in response | |
def test_flow_undo_last(flow_instance): | |
# Test the undo functionality | |
response1 = flow_instance.run("Task 1") | |
flow_instance.run("Task 2") | |
previous_state, message = flow_instance.undo_last() | |
assert response1 == previous_state | |
assert "Restored to" in message | |
def test_flow_dynamic_temperature(flow_instance): | |
# Test dynamic temperature adjustment | |
flow_instance.dynamic_temperature = True | |
response = flow_instance.run("Test task") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
def test_flow_streamed_generation(flow_instance): | |
# Test streamed generation | |
response = flow_instance.streamed_generation("Generating...") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
def test_flow_step(flow_instance): | |
# Test the step method | |
response = flow_instance.step("Test step") | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
def test_flow_graceful_shutdown(flow_instance): | |
# Test graceful shutdown | |
result = flow_instance.graceful_shutdown() | |
assert result is not None | |
# Add more test cases as needed to cover various aspects of your Agent class | |
def test_flow_max_loops(flow_instance): | |
# Test setting and getting the maximum number of loops | |
flow_instance.set_max_loops(10) | |
assert flow_instance.get_max_loops() == 10 | |
def test_flow_autosave_path(flow_instance): | |
# Test setting and getting the autosave path | |
flow_instance.set_autosave_path("text.txt") | |
assert flow_instance.get_autosave_path() == "txt.txt" | |
def test_flow_response_length(flow_instance): | |
# Test checking the length of the response | |
response = flow_instance.run( | |
"Generate a 10,000 word long blog on mental clarity and the" | |
" benefits of meditation." | |
) | |
assert ( | |
len(response) > flow_instance.get_response_length_threshold() | |
) | |
def test_flow_set_response_length_threshold(flow_instance): | |
# Test setting and getting the response length threshold | |
flow_instance.set_response_length_threshold(100) | |
assert flow_instance.get_response_length_threshold() == 100 | |
def test_flow_add_custom_filter(flow_instance): | |
# Test adding a custom response filter | |
flow_instance.add_response_filter("custom_filter") | |
assert "custom_filter" in flow_instance.get_response_filters() | |
def test_flow_remove_custom_filter(flow_instance): | |
# Test removing a custom response filter | |
flow_instance.add_response_filter("custom_filter") | |
flow_instance.remove_response_filter("custom_filter") | |
assert "custom_filter" not in flow_instance.get_response_filters() | |
def test_flow_dynamic_pacing(flow_instance): | |
# Test dynamic pacing | |
flow_instance.enable_dynamic_pacing() | |
assert flow_instance.is_dynamic_pacing_enabled() is True | |
def test_flow_disable_dynamic_pacing(flow_instance): | |
# Test disabling dynamic pacing | |
flow_instance.disable_dynamic_pacing() | |
assert flow_instance.is_dynamic_pacing_enabled() is False | |
def test_flow_change_prompt(flow_instance): | |
# Test changing the current prompt | |
flow_instance.change_prompt("New prompt") | |
assert flow_instance.get_current_prompt() == "New prompt" | |
def test_flow_add_instruction(flow_instance): | |
# Test adding an instruction to the conversation | |
flow_instance.add_instruction("Follow these steps:") | |
assert "Follow these steps:" in flow_instance.get_instructions() | |
def test_flow_clear_instructions(flow_instance): | |
# Test clearing all instructions from the conversation | |
flow_instance.add_instruction("Follow these steps:") | |
flow_instance.clear_instructions() | |
assert len(flow_instance.get_instructions()) == 0 | |
def test_flow_add_user_message(flow_instance): | |
# Test adding a user message to the conversation | |
flow_instance.add_user_message("User message") | |
assert "User message" in flow_instance.get_user_messages() | |
def test_flow_clear_user_messages(flow_instance): | |
# Test clearing all user messages from the conversation | |
flow_instance.add_user_message("User message") | |
flow_instance.clear_user_messages() | |
assert len(flow_instance.get_user_messages()) == 0 | |
def test_flow_get_response_history(flow_instance): | |
# Test getting the response history | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
history = flow_instance.get_response_history() | |
assert len(history) == 2 | |
assert "Message 1" in history[0] | |
assert "Message 2" in history[1] | |
def test_flow_clear_response_history(flow_instance): | |
# Test clearing the response history | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
flow_instance.clear_response_history() | |
assert len(flow_instance.get_response_history()) == 0 | |
def test_flow_get_conversation_log(flow_instance): | |
# Test getting the entire conversation log | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
conversation_log = flow_instance.get_conversation_log() | |
assert ( | |
len(conversation_log) == 4 | |
) # Including system and user messages | |
def test_flow_clear_conversation_log(flow_instance): | |
# Test clearing the entire conversation log | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
flow_instance.clear_conversation_log() | |
assert len(flow_instance.get_conversation_log()) == 0 | |
def test_flow_get_state(flow_instance): | |
# Test getting the current state of the Agent instance | |
state = flow_instance.get_state() | |
assert isinstance(state, dict) | |
assert "current_prompt" in state | |
assert "instructions" in state | |
assert "user_messages" in state | |
assert "response_history" in state | |
assert "conversation_log" in state | |
assert "dynamic_pacing_enabled" in state | |
assert "response_length_threshold" in state | |
assert "response_filters" in state | |
assert "max_loops" in state | |
assert "autosave_path" in state | |
def test_flow_load_state(flow_instance): | |
# Test loading the state into the Agent instance | |
state = { | |
"current_prompt": "Loaded prompt", | |
"instructions": ["Step 1", "Step 2"], | |
"user_messages": ["User message 1", "User message 2"], | |
"response_history": ["Response 1", "Response 2"], | |
"conversation_log": [ | |
"System message 1", | |
"User message 1", | |
"System message 2", | |
"User message 2", | |
], | |
"dynamic_pacing_enabled": True, | |
"response_length_threshold": 50, | |
"response_filters": ["filter1", "filter2"], | |
"max_loops": 10, | |
"autosave_path": "/path/to/load", | |
} | |
flow_instance.load(state) | |
assert flow_instance.get_current_prompt() == "Loaded prompt" | |
assert "Step 1" in flow_instance.get_instructions() | |
assert "User message 1" in flow_instance.get_user_messages() | |
assert "Response 1" in flow_instance.get_response_history() | |
assert "System message 1" in flow_instance.get_conversation_log() | |
assert flow_instance.is_dynamic_pacing_enabled() is True | |
assert flow_instance.get_response_length_threshold() == 50 | |
assert "filter1" in flow_instance.get_response_filters() | |
assert flow_instance.get_max_loops() == 10 | |
assert flow_instance.get_autosave_path() == "/path/to/load" | |
def test_flow_save_state(flow_instance): | |
# Test saving the state of the Agent instance | |
flow_instance.change_prompt("New prompt") | |
flow_instance.add_instruction("Step 1") | |
flow_instance.add_user_message("User message") | |
flow_instance.run("Response") | |
state = flow_instance.save_state() | |
assert "current_prompt" in state | |
assert "instructions" in state | |
assert "user_messages" in state | |
assert "response_history" in state | |
assert "conversation_log" in state | |
assert "dynamic_pacing_enabled" in state | |
assert "response_length_threshold" in state | |
assert "response_filters" in state | |
assert "max_loops" in state | |
assert "autosave_path" in state | |
def test_flow_rollback(flow_instance): | |
# Test rolling back to a previous state | |
state1 = flow_instance.get_state() | |
flow_instance.change_prompt("New prompt") | |
flow_instance.get_state() | |
flow_instance.rollback_to_state(state1) | |
assert ( | |
flow_instance.get_current_prompt() == state1["current_prompt"] | |
) | |
assert flow_instance.get_instructions() == state1["instructions"] | |
assert ( | |
flow_instance.get_user_messages() == state1["user_messages"] | |
) | |
assert ( | |
flow_instance.get_response_history() | |
== state1["response_history"] | |
) | |
assert ( | |
flow_instance.get_conversation_log() | |
== state1["conversation_log"] | |
) | |
assert ( | |
flow_instance.is_dynamic_pacing_enabled() | |
== state1["dynamic_pacing_enabled"] | |
) | |
assert ( | |
flow_instance.get_response_length_threshold() | |
== state1["response_length_threshold"] | |
) | |
assert ( | |
flow_instance.get_response_filters() | |
== state1["response_filters"] | |
) | |
assert flow_instance.get_max_loops() == state1["max_loops"] | |
assert ( | |
flow_instance.get_autosave_path() == state1["autosave_path"] | |
) | |
assert flow_instance.get_state() == state1 | |
def test_flow_contextual_intent(flow_instance): | |
# Test contextual intent handling | |
flow_instance.add_context("location", "New York") | |
flow_instance.add_context("time", "tomorrow") | |
response = flow_instance.run( | |
"What's the weather like in {location} at {time}?" | |
) | |
assert "New York" in response | |
assert "tomorrow" in response | |
def test_flow_contextual_intent_override(flow_instance): | |
# Test contextual intent override | |
flow_instance.add_context("location", "New York") | |
response1 = flow_instance.run( | |
"What's the weather like in {location}?" | |
) | |
flow_instance.add_context("location", "Los Angeles") | |
response2 = flow_instance.run( | |
"What's the weather like in {location}?" | |
) | |
assert "New York" in response1 | |
assert "Los Angeles" in response2 | |
def test_flow_contextual_intent_reset(flow_instance): | |
# Test resetting contextual intent | |
flow_instance.add_context("location", "New York") | |
response1 = flow_instance.run( | |
"What's the weather like in {location}?" | |
) | |
flow_instance.reset_context() | |
response2 = flow_instance.run( | |
"What's the weather like in {location}?" | |
) | |
assert "New York" in response1 | |
assert "New York" in response2 | |
# Add more test cases as needed to cover various aspects of your Agent class | |
def test_flow_interruptible(flow_instance): | |
# Test interruptible mode | |
flow_instance.interruptible = True | |
response = flow_instance.run("Interrupt me!") | |
assert "Interrupted" in response | |
assert flow_instance.is_interrupted() is True | |
def test_flow_non_interruptible(flow_instance): | |
# Test non-interruptible mode | |
flow_instance.interruptible = False | |
response = flow_instance.run("Do not interrupt me!") | |
assert "Do not interrupt me!" in response | |
assert flow_instance.is_interrupted() is False | |
def test_flow_timeout(flow_instance): | |
# Test conversation timeout | |
flow_instance.timeout = 60 # Set a timeout of 60 seconds | |
response = flow_instance.run( | |
"This should take some time to respond." | |
) | |
assert "Timed out" in response | |
assert flow_instance.is_timed_out() is True | |
def test_flow_no_timeout(flow_instance): | |
# Test no conversation timeout | |
flow_instance.timeout = None | |
response = flow_instance.run("This should not time out.") | |
assert "This should not time out." in response | |
assert flow_instance.is_timed_out() is False | |
def test_flow_custom_delimiter(flow_instance): | |
# Test setting and getting a custom message delimiter | |
flow_instance.set_message_delimiter("|||") | |
assert flow_instance.get_message_delimiter() == "|||" | |
def test_flow_message_history(flow_instance): | |
# Test getting the message history | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
history = flow_instance.get_message_history() | |
assert len(history) == 2 | |
assert "Message 1" in history[0] | |
assert "Message 2" in history[1] | |
def test_flow_clear_message_history(flow_instance): | |
# Test clearing the message history | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
flow_instance.clear_message_history() | |
assert len(flow_instance.get_message_history()) == 0 | |
def test_flow_save_and_load_conversation(flow_instance): | |
# Test saving and loading the conversation | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
saved_conversation = flow_instance.save_conversation() | |
flow_instance.clear_conversation() | |
flow_instance.load_conversation(saved_conversation) | |
assert len(flow_instance.get_message_history()) == 2 | |
def test_flow_inject_custom_system_message(flow_instance): | |
# Test injecting a custom system message into the conversation | |
flow_instance.inject_custom_system_message( | |
"Custom system message" | |
) | |
assert ( | |
"Custom system message" in flow_instance.get_message_history() | |
) | |
def test_flow_inject_custom_user_message(flow_instance): | |
# Test injecting a custom user message into the conversation | |
flow_instance.inject_custom_user_message("Custom user message") | |
assert ( | |
"Custom user message" in flow_instance.get_message_history() | |
) | |
def test_flow_inject_custom_response(flow_instance): | |
# Test injecting a custom response into the conversation | |
flow_instance.inject_custom_response("Custom response") | |
assert "Custom response" in flow_instance.get_message_history() | |
def test_flow_clear_injected_messages(flow_instance): | |
# Test clearing injected messages from the conversation | |
flow_instance.inject_custom_system_message( | |
"Custom system message" | |
) | |
flow_instance.inject_custom_user_message("Custom user message") | |
flow_instance.inject_custom_response("Custom response") | |
flow_instance.clear_injected_messages() | |
assert ( | |
"Custom system message" | |
not in flow_instance.get_message_history() | |
) | |
assert ( | |
"Custom user message" | |
not in flow_instance.get_message_history() | |
) | |
assert ( | |
"Custom response" not in flow_instance.get_message_history() | |
) | |
def test_flow_disable_message_history(flow_instance): | |
# Test disabling message history recording | |
flow_instance.disable_message_history() | |
response = flow_instance.run( | |
"This message should not be recorded in history." | |
) | |
assert ( | |
"This message should not be recorded in history." in response | |
) | |
assert ( | |
len(flow_instance.get_message_history()) == 0 | |
) # History is empty | |
def test_flow_enable_message_history(flow_instance): | |
# Test enabling message history recording | |
flow_instance.enable_message_history() | |
response = flow_instance.run( | |
"This message should be recorded in history." | |
) | |
assert "This message should be recorded in history." in response | |
assert len(flow_instance.get_message_history()) == 1 | |
def test_flow_custom_logger(flow_instance): | |
# Test setting and using a custom logger | |
custom_logger = logger # Replace with your custom logger class | |
flow_instance.set_logger(custom_logger) | |
response = flow_instance.run("Custom logger test") | |
assert ( | |
"Logged using custom logger" in response | |
) # Verify logging message | |
def test_flow_batch_processing(flow_instance): | |
# Test batch processing of messages | |
messages = ["Message 1", "Message 2", "Message 3"] | |
responses = flow_instance.process_batch(messages) | |
assert isinstance(responses, list) | |
assert len(responses) == len(messages) | |
for response in responses: | |
assert isinstance(response, str) | |
def test_flow_custom_metrics(flow_instance): | |
# Test tracking custom metrics | |
flow_instance.track_custom_metric("custom_metric_1", 42) | |
flow_instance.track_custom_metric("custom_metric_2", 3.14) | |
metrics = flow_instance.get_custom_metrics() | |
assert "custom_metric_1" in metrics | |
assert "custom_metric_2" in metrics | |
assert metrics["custom_metric_1"] == 42 | |
assert metrics["custom_metric_2"] == 3.14 | |
def test_flow_reset_metrics(flow_instance): | |
# Test resetting custom metrics | |
flow_instance.track_custom_metric("custom_metric_1", 42) | |
flow_instance.track_custom_metric("custom_metric_2", 3.14) | |
flow_instance.reset_custom_metrics() | |
metrics = flow_instance.get_custom_metrics() | |
assert len(metrics) == 0 | |
def test_flow_retrieve_context(flow_instance): | |
# Test retrieving context | |
flow_instance.add_context("location", "New York") | |
context = flow_instance.get_context("location") | |
assert context == "New York" | |
def test_flow_update_context(flow_instance): | |
# Test updating context | |
flow_instance.add_context("location", "New York") | |
flow_instance.update_context("location", "Los Angeles") | |
context = flow_instance.get_context("location") | |
assert context == "Los Angeles" | |
def test_flow_remove_context(flow_instance): | |
# Test removing context | |
flow_instance.add_context("location", "New York") | |
flow_instance.remove_context("location") | |
context = flow_instance.get_context("location") | |
assert context is None | |
def test_flow_clear_context(flow_instance): | |
# Test clearing all context | |
flow_instance.add_context("location", "New York") | |
flow_instance.add_context("time", "tomorrow") | |
flow_instance.clear_context() | |
context_location = flow_instance.get_context("location") | |
context_time = flow_instance.get_context("time") | |
assert context_location is None | |
assert context_time is None | |
def test_flow_input_validation(flow_instance): | |
# Test input validation for invalid agent configurations | |
with pytest.raises(ValueError): | |
Agent(config=None) # Invalid config, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.set_message_delimiter( | |
"" | |
) # Empty delimiter, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.set_message_delimiter( | |
None | |
) # None delimiter, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.set_message_delimiter( | |
123 | |
) # Invalid delimiter type, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.set_logger( | |
"invalid_logger" | |
) # Invalid logger type, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.add_context( | |
None, "value" | |
) # None key, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.add_context( | |
"key", None | |
) # None value, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.update_context( | |
None, "value" | |
) # None key, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.update_context( | |
"key", None | |
) # None value, should raise ValueError | |
def test_flow_conversation_reset(flow_instance): | |
# Test conversation reset | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
flow_instance.reset_conversation() | |
assert len(flow_instance.get_message_history()) == 0 | |
def test_flow_conversation_persistence(flow_instance): | |
# Test conversation persistence across instances | |
flow_instance.run("Message 1") | |
flow_instance.run("Message 2") | |
conversation = flow_instance.get_conversation() | |
new_flow_instance = Agent() | |
new_flow_instance.load_conversation(conversation) | |
assert len(new_flow_instance.get_message_history()) == 2 | |
assert "Message 1" in new_flow_instance.get_message_history()[0] | |
assert "Message 2" in new_flow_instance.get_message_history()[1] | |
def test_flow_custom_event_listener(flow_instance): | |
# Test custom event listener | |
class CustomEventListener: | |
def on_message_received(self, message): | |
pass | |
def on_response_generated(self, response): | |
pass | |
custom_event_listener = CustomEventListener() | |
flow_instance.add_event_listener(custom_event_listener) | |
# Ensure that the custom event listener methods are called during a conversation | |
with mock.patch.object( | |
custom_event_listener, "on_message_received" | |
) as mock_received, mock.patch.object( | |
custom_event_listener, "on_response_generated" | |
) as mock_response: | |
flow_instance.run("Message 1") | |
mock_received.assert_called_once() | |
mock_response.assert_called_once() | |
def test_flow_multiple_event_listeners(flow_instance): | |
# Test multiple event listeners | |
class FirstEventListener: | |
def on_message_received(self, message): | |
pass | |
def on_response_generated(self, response): | |
pass | |
class SecondEventListener: | |
def on_message_received(self, message): | |
pass | |
def on_response_generated(self, response): | |
pass | |
first_event_listener = FirstEventListener() | |
second_event_listener = SecondEventListener() | |
flow_instance.add_event_listener(first_event_listener) | |
flow_instance.add_event_listener(second_event_listener) | |
# Ensure that both event listeners receive events during a conversation | |
with mock.patch.object( | |
first_event_listener, "on_message_received" | |
) as mock_first_received, mock.patch.object( | |
first_event_listener, "on_response_generated" | |
) as mock_first_response, mock.patch.object( | |
second_event_listener, "on_message_received" | |
) as mock_second_received, mock.patch.object( | |
second_event_listener, "on_response_generated" | |
) as mock_second_response: | |
flow_instance.run("Message 1") | |
mock_first_received.assert_called_once() | |
mock_first_response.assert_called_once() | |
mock_second_received.assert_called_once() | |
mock_second_response.assert_called_once() | |
# Add more test cases as needed to cover various aspects of your Agent class | |
def test_flow_error_handling(flow_instance): | |
# Test error handling and exceptions | |
with pytest.raises(ValueError): | |
flow_instance.set_message_delimiter( | |
"" | |
) # Empty delimiter, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.set_message_delimiter( | |
None | |
) # None delimiter, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.set_logger( | |
"invalid_logger" | |
) # Invalid logger type, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.add_context( | |
None, "value" | |
) # None key, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.add_context( | |
"key", None | |
) # None value, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.update_context( | |
None, "value" | |
) # None key, should raise ValueError | |
with pytest.raises(ValueError): | |
flow_instance.update_context( | |
"key", None | |
) # None value, should raise ValueError | |
def test_flow_context_operations(flow_instance): | |
# Test context operations | |
flow_instance.add_context("user_id", "12345") | |
assert flow_instance.get_context("user_id") == "12345" | |
flow_instance.update_context("user_id", "54321") | |
assert flow_instance.get_context("user_id") == "54321" | |
flow_instance.remove_context("user_id") | |
assert flow_instance.get_context("user_id") is None | |
# Add more test cases as needed to cover various aspects of your Agent class | |
def test_flow_long_messages(flow_instance): | |
# Test handling of long messages | |
long_message = "A" * 10000 # Create a very long message | |
flow_instance.run(long_message) | |
assert len(flow_instance.get_message_history()) == 1 | |
assert flow_instance.get_message_history()[0] == long_message | |
def test_flow_custom_response(flow_instance): | |
# Test custom response generation | |
def custom_response_generator(message): | |
if message == "Hello": | |
return "Hi there!" | |
elif message == "How are you?": | |
return "I'm doing well, thank you." | |
else: | |
return "I don't understand." | |
flow_instance.set_response_generator(custom_response_generator) | |
assert flow_instance.run("Hello") == "Hi there!" | |
assert ( | |
flow_instance.run("How are you?") | |
== "I'm doing well, thank you." | |
) | |
assert ( | |
flow_instance.run("What's your name?") | |
== "I don't understand." | |
) | |
def test_flow_message_validation(flow_instance): | |
# Test message validation | |
def custom_message_validator(message): | |
return len(message) > 0 # Reject empty messages | |
flow_instance.set_message_validator(custom_message_validator) | |
assert flow_instance.run("Valid message") is not None | |
assert ( | |
flow_instance.run("") is None | |
) # Empty message should be rejected | |
assert ( | |
flow_instance.run(None) is None | |
) # None message should be rejected | |
def test_flow_custom_logging(flow_instance): | |
custom_logger = logger | |
flow_instance.set_logger(custom_logger) | |
with mock.patch.object(custom_logger, "log") as mock_log: | |
flow_instance.run("Message") | |
mock_log.assert_called_once_with("Message") | |
def test_flow_performance(flow_instance): | |
# Test the performance of the Agent class by running a large number of messages | |
num_messages = 1000 | |
for i in range(num_messages): | |
flow_instance.run(f"Message {i}") | |
assert len(flow_instance.get_message_history()) == num_messages | |
def test_flow_complex_use_case(flow_instance): | |
# Test a complex use case scenario | |
flow_instance.add_context("user_id", "12345") | |
flow_instance.run("Hello") | |
flow_instance.run("How can I help you?") | |
assert ( | |
flow_instance.get_response() == "Please provide more details." | |
) | |
flow_instance.update_context("user_id", "54321") | |
flow_instance.run("I need help with my order") | |
assert ( | |
flow_instance.get_response() | |
== "Sure, I can assist with that." | |
) | |
flow_instance.reset_conversation() | |
assert len(flow_instance.get_message_history()) == 0 | |
assert flow_instance.get_context("user_id") is None | |
# Add more test cases as needed to cover various aspects of your Agent class | |
def test_flow_context_handling(flow_instance): | |
# Test context handling | |
flow_instance.add_context("user_id", "12345") | |
assert flow_instance.get_context("user_id") == "12345" | |
flow_instance.update_context("user_id", "54321") | |
assert flow_instance.get_context("user_id") == "54321" | |
flow_instance.remove_context("user_id") | |
assert flow_instance.get_context("user_id") is None | |
def test_flow_concurrent_requests(flow_instance): | |
# Test concurrent message processing | |
import threading | |
def send_messages(): | |
for i in range(100): | |
flow_instance.run(f"Message {i}") | |
threads = [] | |
for _ in range(5): | |
thread = threading.Thread(target=send_messages) | |
threads.append(thread) | |
thread.start() | |
for thread in threads: | |
thread.join() | |
assert len(flow_instance.get_message_history()) == 500 | |
def test_flow_custom_timeout(flow_instance): | |
# Test custom timeout handling | |
flow_instance.set_timeout( | |
10 | |
) # Set a custom timeout of 10 seconds | |
assert flow_instance.get_timeout() == 10 | |
import time | |
start_time = time.time() | |
flow_instance.run("Long-running operation") | |
end_time = time.time() | |
execution_time = end_time - start_time | |
assert execution_time >= 10 # Ensure the timeout was respected | |
# Add more test cases as needed to thoroughly cover your Agent class | |
def test_flow_interactive_run(flow_instance, capsys): | |
# Test interactive run mode | |
# Simulate user input and check if the AI responds correctly | |
user_input = ["Hello", "How can you help me?", "Exit"] | |
def simulate_user_input(input_list): | |
input_index = 0 | |
while input_index < len(input_list): | |
user_response = input_list[input_index] | |
flow_instance.interactive_run(max_loops=1) | |
# Capture the AI's response | |
captured = capsys.readouterr() | |
ai_response = captured.out.strip() | |
assert f"You: {user_response}" in captured.out | |
assert "AI:" in captured.out | |
# Check if the AI's response matches the expected response | |
expected_response = f"AI: {ai_response}" | |
assert expected_response in captured.out | |
input_index += 1 | |
simulate_user_input(user_input) | |
# Assuming you have already defined your Agent class and created an instance for testing | |
def test_flow_agent_history_prompt(flow_instance): | |
# Test agent history prompt generation | |
system_prompt = "This is the system prompt." | |
history = ["User: Hi", "AI: Hello"] | |
agent_history_prompt = flow_instance.agent_history_prompt( | |
system_prompt, history | |
) | |
assert ( | |
"SYSTEM_PROMPT: This is the system prompt." | |
in agent_history_prompt | |
) | |
assert ( | |
"History: ['User: Hi', 'AI: Hello']" in agent_history_prompt | |
) | |
async def test_flow_run_concurrent(flow_instance): | |
# Test running tasks concurrently | |
tasks = ["Task 1", "Task 2", "Task 3"] | |
completed_tasks = await flow_instance.run_concurrent(tasks) | |
# Ensure that all tasks are completed | |
assert len(completed_tasks) == len(tasks) | |
def test_flow_bulk_run(flow_instance): | |
# Test bulk running of tasks | |
input_data = [ | |
{"task": "Task 1", "param1": "value1"}, | |
{"task": "Task 2", "param2": "value2"}, | |
{"task": "Task 3", "param3": "value3"}, | |
] | |
responses = flow_instance.bulk_run(input_data) | |
# Ensure that the responses match the input tasks | |
assert responses[0] == "Response for Task 1" | |
assert responses[1] == "Response for Task 2" | |
assert responses[2] == "Response for Task 3" | |
def test_flow_from_llm_and_template(): | |
# Test creating Agent instance from an LLM and a template | |
llm_instance = mocked_llm # Replace with your LLM class | |
template = "This is a template for testing." | |
flow_instance = Agent.from_llm_and_template( | |
llm_instance, template | |
) | |
assert isinstance(flow_instance, Agent) | |
def test_flow_from_llm_and_template_file(): | |
# Test creating Agent instance from an LLM and a template file | |
llm_instance = mocked_llm # Replace with your LLM class | |
template_file = ( | |
"template.txt" # Create a template file for testing | |
) | |
flow_instance = Agent.from_llm_and_template_file( | |
llm_instance, template_file | |
) | |
assert isinstance(flow_instance, Agent) | |
def test_flow_save_and_load(flow_instance, tmp_path): | |
# Test saving and loading the agent state | |
file_path = tmp_path / "flow_state.json" | |
# Save the state | |
flow_instance.save(file_path) | |
# Create a new instance and load the state | |
new_flow_instance = Agent(llm=mocked_llm, max_loops=5) | |
new_flow_instance.load(file_path) | |
# Ensure that the loaded state matches the original state | |
assert new_flow_instance.memory == flow_instance.memory | |
def test_flow_validate_response(flow_instance): | |
# Test response validation | |
valid_response = "This is a valid response." | |
invalid_response = "Short." | |
assert flow_instance.validate_response(valid_response) is True | |
assert flow_instance.validate_response(invalid_response) is False | |
# Add more test cases as needed for other methods and features of your Agent class | |
# Finally, don't forget to run your tests using a testing framework like pytest | |
# Assuming you have already defined your Agent class and created an instance for testing | |
def test_flow_print_history_and_memory(capsys, flow_instance): | |
# Test printing the history and memory of the agent | |
history = ["User: Hi", "AI: Hello"] | |
flow_instance.memory = [history] | |
flow_instance.print_history_and_memory() | |
captured = capsys.readouterr() | |
assert "Agent History and Memory" in captured.out | |
assert "Loop 1:" in captured.out | |
assert "User: Hi" in captured.out | |
assert "AI: Hello" in captured.out | |
def test_flow_run_with_timeout(flow_instance): | |
# Test running with a timeout | |
task = "Task with a long response time" | |
response = flow_instance.run_with_timeout(task, timeout=1) | |
# Ensure that the response is either the actual response or "Timeout" | |
assert response in ["Actual Response", "Timeout"] | |
# Add more test cases as needed for other methods and features of your Agent class | |
# Finally, don't forget to run your tests using a testing framework like pytest | |