harveysamson's picture
added models and inference
6886c22
raw
history blame
2.81 kB
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import torch
import transformers
from transformers import Wav2Vec2Processor, Wav2Vec2FeatureExtractor
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`)
The feature_extractor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
feature_extractor: Wav2Vec2FeatureExtractor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [feature["labels"] for feature in features]
d_type = torch.long if isinstance(label_features[0], int) else torch.float
batch = self.feature_extractor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
batch["labels"] = torch.tensor(label_features, dtype=d_type)
return batch