hashirehtisham commited on
Commit
bdca534
·
verified ·
1 Parent(s): ce738aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -46
app.py CHANGED
@@ -13,83 +13,131 @@ import requests
13
  from bs4 import BeautifulSoup
14
  import urllib
15
  import random
 
16
 
17
- # List of user agents for requests
18
- user_agents = [
19
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
20
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36'
 
 
 
 
 
21
  ]
22
 
23
  def get_useragent():
24
- return random.choice(user_agents)
 
25
 
26
- def extract_text(html):
27
- """Extract visible text from HTML content."""
28
- soup = BeautifulSoup(html, "html.parser")
 
29
  for tag in soup(["script", "style", "header", "footer", "nav"]):
30
  tag.extract()
31
- return soup.get_text(strip=True)[:8000]
 
 
 
32
 
33
- def search(term, num_results=2):
34
  """Performs a Google search and returns the results."""
35
- response = requests.get(
36
- "https://www.google.com/search",
37
- headers={"User-Agent": get_useragent()},
38
- params={"q": term, "num": num_results}
39
- )
40
- response.raise_for_status()
41
-
42
- results = []
43
- for link in BeautifulSoup(response.text, "html.parser").find_all("div", class_="g"):
44
- url = link.find("a", href=True)
45
- if url:
 
 
 
 
 
 
 
 
 
46
  try:
47
- webpage = requests.get(url["href"], headers={"User-Agent": get_useragent()})
 
48
  webpage.raise_for_status()
49
- results.append({"link": url["href"], "text": extract_text(webpage.text)})
50
- except requests.exceptions.RequestException:
51
- results.append({"link": None, "text": None})
52
- return results
 
 
 
 
 
 
53
 
54
- # Load models
55
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
 
 
 
56
  preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
57
  encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
58
  tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
59
- client = InferenceClient("HuggingFaceH4/zephyr-7b-alpha")
60
 
61
- def resample(audio, sr):
62
- return soxr.resample(audio, sr, 16000)
 
 
 
 
63
 
64
- def to_float32(audio):
65
- return np.divide(audio, np.iinfo(audio.dtype).max, dtype=np.float32)
66
 
67
  def transcribe(audio_path):
68
  audio_file = AudioSegment.from_file(audio_path)
69
  sr = audio_file.frame_rate
70
  audio_buffer = np.array(audio_file.get_array_of_samples())
 
71
  audio_fp32 = to_float32(audio_buffer)
72
  audio_16k = resample(audio_fp32, sr)
73
-
74
  input_signal = torch.tensor(audio_16k).unsqueeze(0)
75
  length = torch.tensor(len(audio_16k)).unsqueeze(0)
76
  processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
77
 
78
  logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
79
- decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != tokenizer.vocab_size()]
80
- return tokenizer.decode_ids(decoded_prediction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  async def respond(audio, web_search):
83
- user_input = transcribe(audio)
84
- web_results = search(user_input) if web_search else []
85
- web_text = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
86
- prompt = f"<s>[SYSTEM] {user_input}[WEB]{web_text}[OpenGPT 4o]"
87
-
88
- reply = "".join([response.token.text for response in client.text_generation(prompt, max_new_tokens=300, stream=True) if response.token.text != "</s>"])
89
  communicate = edge_tts.Communicate(reply)
90
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
91
- await communicate.save(tmp_file.name)
92
- return tmp_file.name
 
93
 
94
  with gr.Blocks() as demo:
95
  gr.Markdown("# Emotional Support\nHello! I'm here to support you emotionally and answer any questions. How are you feeling today?")
@@ -97,9 +145,9 @@ with gr.Blocks() as demo:
97
 
98
  with gr.Row():
99
  web_search = gr.Checkbox(label="Web Search", value=False)
100
- input_audio = gr.Audio(label="User Input", sources="microphone", type="filepath")
101
- output_audio = gr.Audio(label="AI", autoplay=True)
102
- gr.Interface(fn=respond, inputs=[input_audio, web_search], outputs=[output_audio], live=True)
103
 
104
  if __name__ == "__main__":
105
- demo.launch()
 
13
  from bs4 import BeautifulSoup
14
  import urllib
15
  import random
16
+ import re
17
 
18
+ # List of user agents to choose from for requests
19
+ _useragent_list = [
20
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
21
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
22
+ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
23
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
24
+ 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
25
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
26
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
27
  ]
28
 
29
  def get_useragent():
30
+ """Returns a random user agent from the list."""
31
+ return random.choice(_useragent_list)
32
 
33
+ def extract_text_from_webpage(html_content):
34
+ """Extracts visible text from HTML content using BeautifulSoup."""
35
+ soup = BeautifulSoup(html_content, "html.parser")
36
+ # Remove unwanted tags
37
  for tag in soup(["script", "style", "header", "footer", "nav"]):
38
  tag.extract()
39
+ # Get the remaining visible text
40
+ visible_text = soup.get_text(strip=True)
41
+ visible_text = visible_text[:8000]
42
+ return visible_text
43
 
44
+ def search(term, num_results=2, timeout=5, ssl_verify=None):
45
  """Performs a Google search and returns the results."""
46
+ escaped_term = urllib.parse.quote_plus(term)
47
+ all_results = []
48
+ resp = requests.get(
49
+ url="https://www.google.com/search",
50
+ headers={"User-Agent": get_useragent()}, # Set random user agent
51
+ params={
52
+ "q": term,
53
+ "num": num_results,
54
+ "udm": 14,
55
+ },
56
+ timeout=timeout,
57
+ verify=ssl_verify,
58
+ )
59
+ resp.raise_for_status() # Raise an exception if request fails
60
+ soup = BeautifulSoup(resp.text, "html.parser")
61
+ result_block = soup.find_all("div", attrs={"class": "g"})
62
+ for result in result_block:
63
+ link = result.find("a", href=True)
64
+ if link:
65
+ link = link["href"]
66
  try:
67
+ # Fetch webpage content
68
+ webpage = requests.get(link, headers={"User-Agent": get_useragent()})
69
  webpage.raise_for_status()
70
+ # Extract visible text from webpage
71
+ visible_text = extract_text_from_webpage(webpage.text)
72
+ all_results.append({"link": link, "text": visible_text})
73
+ except requests.exceptions.RequestException as e:
74
+ print(f"Error fetching or processing {link}: {e}")
75
+ all_results.append({"link": link, "text": None})
76
+ else:
77
+ all_results.append({"link": None, "text": None})
78
+ print(all_results)
79
+ return all_results
80
 
81
+ # Speech Recognition Model Configuration
82
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
83
+ sample_rate = 16000
84
+
85
+ # Download preprocessor, encoder and tokenizer
86
  preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
87
  encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
88
  tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
 
89
 
90
+ # Mistral Model Configuration
91
+ client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
92
+ system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
93
+
94
+ def resample(audio_fp32, sr):
95
+ return soxr.resample(audio_fp32, sr, sample_rate)
96
 
97
+ def to_float32(audio_buffer):
98
+ return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
99
 
100
  def transcribe(audio_path):
101
  audio_file = AudioSegment.from_file(audio_path)
102
  sr = audio_file.frame_rate
103
  audio_buffer = np.array(audio_file.get_array_of_samples())
104
+
105
  audio_fp32 = to_float32(audio_buffer)
106
  audio_16k = resample(audio_fp32, sr)
107
+
108
  input_signal = torch.tensor(audio_16k).unsqueeze(0)
109
  length = torch.tensor(len(audio_16k)).unsqueeze(0)
110
  processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
111
 
112
  logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
113
+
114
+ blank_id = tokenizer.vocab_size()
115
+ decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
116
+ text = tokenizer.decode_ids(decoded_prediction)
117
+
118
+ return text
119
+
120
+ def model(text, web_search):
121
+ if web_search is True:
122
+ """Performs a web search, feeds the results to a language model, and returns the answer."""
123
+ web_results = search(text)
124
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
125
+ formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
126
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
127
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
128
+ else:
129
+ formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
130
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
131
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
132
 
133
  async def respond(audio, web_search):
134
+ user = transcribe(audio)
135
+ reply = model(user, web_search)
 
 
 
 
136
  communicate = edge_tts.Communicate(reply)
137
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
138
+ tmp_path = tmp_file.name
139
+ await communicate.save(tmp_path)
140
+ return tmp_path
141
 
142
  with gr.Blocks() as demo:
143
  gr.Markdown("# Emotional Support\nHello! I'm here to support you emotionally and answer any questions. How are you feeling today?")
 
145
 
146
  with gr.Row():
147
  web_search = gr.Checkbox(label="Web Search", value=False)
148
+ input = gr.Audio(label="User Input", sources="microphone", type="filepath")
149
+ output = gr.Audio(label="AI", autoplay=True)
150
+ gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
151
 
152
  if __name__ == "__main__":
153
+ demo.queue(max_size=200).launch()