Spaces:
Sleeping
Sleeping
File size: 13,114 Bytes
1040e55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# coding=utf-8
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MplugOwl model configuration """
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json",
# See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl
}
class MplugOwlVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration defaults will yield a similar configuration to that of the mPLUG-Owl
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
```"""
model_type = "mplug_owl_vision_model"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
projection_dim=768,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
use_flash_attn=False,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.use_flash_attn = use_flash_attn
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from MplugOwlConfig
if config_dict.get("model_type") == "mplug-owl":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class MplugOwlVisualAbstractorConfig(PretrainedConfig):
model_type = "mplug_owl_visual_abstract"
def __init__(
self,
hidden_size=1024, #
num_hidden_layers=6, #
num_attention_heads=16, #
intermediate_size=4096, #
attention_probs_dropout_prob=0.1, #
initializer_range=0.02,
layer_norm_eps=1e-6, #
encoder_hidden_size=1024, #
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.encoder_hidden_size = encoder_hidden_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
if config_dict.get("model_type") == "mplug-owl":
config_dict = config_dict["abstractor_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class MplugOwlConfig(PretrainedConfig):
r"""
[`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`]. It is
used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model, Q-Former model
and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to
that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`].
visual_abstractor_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`].
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize any [`PretrainedConfig`].
num_query_tokens (`int`, *optional*, defaults to 32):
The number of query tokens passed through the Transformer.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import (
... MplugOwlVisionConfig,
... MplugOwlVisualAbstractorConfig,
... OPTConfig,
... MplugOwlConfig,
... MplugOwlForConditionalGeneration,
... )
>>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration
>>> configuration = MplugOwlConfig()
>>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration
>>> model = MplugOwlForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig
>>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations
>>> vision_config = MplugOwlVisionConfig()
>>> visual_abstractor_config = MplugOwlVisualAbstractorConfig()
>>> text_config = OPTConfig()
>>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config)
```"""
model_type = "mplug-owl"
is_composition = True
def __init__(
self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = MplugOwlVisionConfig().to_dict()
logger.info("vision_config is None.")
if visual_abstractor_config is None:
visual_abstractor_config = {}
logger.info("abstractor_config is None. ")
if text_config is None:
# we use LLAMA 7b by default
from ..llama.configuration_llama import LlamaConfig
text_config = LlamaConfig(pad_token_id=2).to_dict()
logger.info("text_config is None.")
self.vision_config = MplugOwlVisionConfig(**vision_config)
self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config)
# self.visual_abstractor_config.layer_norm_eps = 1e-6
text_model_type = text_config["model_type"] if "model_type" in text_config else "llama"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self.is_encoder_decoder = self.text_config.is_encoder_decoder
self.num_query_tokens = num_query_tokens
# self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
for attr in dir(self.text_config):
if not hasattr(self, attr):
setattr(self, attr, getattr(self.text_config, attr))
@classmethod
def from_vision_visual_abstractor_text_configs(
cls,
vision_config: MplugOwlVisionConfig,
visual_abstractor_config: MplugOwlVisualAbstractorConfig,
text_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language model
configurations.
Returns:
[`MplugOwlConfig`]: An instance of a configuration object
"""
return cls(
vision_config=vision_config.to_dict(),
visual_abstractor_config=visual_abstractor_config.to_dict(),
text_config=text_config.to_dict(),
**kwargs,
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
|