File size: 13,114 Bytes
1040e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# coding=utf-8
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MplugOwl model configuration """
import copy
import os
from typing import Union

from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)

MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json",
    # See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl
}


class MplugOwlVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a
     mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
     configuration defaults will yield a similar configuration to that of the mPLUG-Owl
     [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.

     Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
     documentation from [`PretrainedConfig`] for more information.

     Args:
         hidden_size (`int`, *optional*, defaults to 768):
             Dimensionality of the encoder layers and the pooler layer.
         intermediate_size (`int`, *optional*, defaults to 3072):
             Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         num_hidden_layers (`int`, *optional*, defaults to 12):
             Number of hidden layers in the Transformer encoder.
         num_attention_heads (`int`, *optional*, defaults to 12):
             Number of attention heads for each attention layer in the Transformer encoder.
         image_size (`int`, *optional*, defaults to 224):
             The size (resolution) of each image.
         patch_size (`int`, *optional*, defaults to 32):
             The size (resolution) of each patch.
         hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
             The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
             `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
         layer_norm_eps (`float`, *optional*, defaults to 1e-5):
             The epsilon used by the layer normalization layers.
         attention_dropout (`float`, *optional*, defaults to 0.0):
             The dropout ratio for the attention probabilities.
         initializer_range (`float`, *optional*, defaults to 0.02):
             The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         initializer_factor (`float`, *optional*, defaults to 1):
             A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
             testing).


     ```"""

    model_type = "mplug_owl_vision_model"

    def __init__(
        self,
        hidden_size=1024,
        intermediate_size=4096,
        projection_dim=768,
        num_hidden_layers=24,
        num_attention_heads=16,
        num_channels=3,
        image_size=224,
        patch_size=14,
        hidden_act="quick_gelu",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        use_flash_attn=False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.use_flash_attn = use_flash_attn

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the vision config dict if we are loading from MplugOwlConfig
        if config_dict.get("model_type") == "mplug-owl":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class MplugOwlVisualAbstractorConfig(PretrainedConfig):
    model_type = "mplug_owl_visual_abstract"

    def __init__(
        self,
        hidden_size=1024,  #
        num_hidden_layers=6,  #
        num_attention_heads=16,  #
        intermediate_size=4096,  #
        attention_probs_dropout_prob=0.1,  #
        initializer_range=0.02,
        layer_norm_eps=1e-6,  #
        encoder_hidden_size=1024,  #
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.encoder_hidden_size = encoder_hidden_size

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the visual_abstractor config dict if we are loading from MplugOwlConfig
        if config_dict.get("model_type") == "mplug-owl":
            config_dict = config_dict["abstractor_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class MplugOwlConfig(PretrainedConfig):
    r"""
    [`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`]. It is
    used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model, Q-Former model
    and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to
    that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`].
        visual_abstractor_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`].
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize any [`PretrainedConfig`].
        num_query_tokens (`int`, *optional*, defaults to 32):
            The number of query tokens passed through the Transformer.

        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import (
    ...     MplugOwlVisionConfig,
    ...     MplugOwlVisualAbstractorConfig,
    ...     OPTConfig,
    ...     MplugOwlConfig,
    ...     MplugOwlForConditionalGeneration,
    ... )

    >>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration
    >>> configuration = MplugOwlConfig()

    >>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration
    >>> model = MplugOwlForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig

    >>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations
    >>> vision_config = MplugOwlVisionConfig()
    >>> visual_abstractor_config = MplugOwlVisualAbstractorConfig()
    >>> text_config = OPTConfig()

    >>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config)
    ```"""
    model_type = "mplug-owl"
    is_composition = True

    def __init__(
        self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs
    ):
        super().__init__(**kwargs)
        if vision_config is None:
            vision_config = MplugOwlVisionConfig().to_dict()
            logger.info("vision_config is None.")

        if visual_abstractor_config is None:
            visual_abstractor_config = {}
            logger.info("abstractor_config is None. ")

        if text_config is None:
            # we use LLAMA 7b by default
            from ..llama.configuration_llama import LlamaConfig

            text_config = LlamaConfig(pad_token_id=2).to_dict()
            logger.info("text_config is None.")

        self.vision_config = MplugOwlVisionConfig(**vision_config)
        self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config)
        # self.visual_abstractor_config.layer_norm_eps = 1e-6
        text_model_type = text_config["model_type"] if "model_type" in text_config else "llama"
        self.text_config = CONFIG_MAPPING[text_model_type](**text_config)

        self.tie_word_embeddings = self.text_config.tie_word_embeddings
        self.is_encoder_decoder = self.text_config.is_encoder_decoder

        self.num_query_tokens = num_query_tokens
        # self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
        self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
        self.initializer_factor = 1.0
        self.initializer_range = 0.02

        for attr in dir(self.text_config):
            if not hasattr(self, attr):
                setattr(self, attr, getattr(self.text_config, attr))

    @classmethod
    def from_vision_visual_abstractor_text_configs(
        cls,
        vision_config: MplugOwlVisionConfig,
        visual_abstractor_config: MplugOwlVisualAbstractorConfig,
        text_config: PretrainedConfig,
        **kwargs,
    ):
        r"""
        Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language model
        configurations.

        Returns:
            [`MplugOwlConfig`]: An instance of a configuration object
        """

        return cls(
            vision_config=vision_config.to_dict(),
            visual_abstractor_config=visual_abstractor_config.to_dict(),
            text_config=text_config.to_dict(),
            **kwargs,
        )

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        output["vision_config"] = self.vision_config.to_dict()
        output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict()
        output["text_config"] = self.text_config.to_dict()
        output["model_type"] = self.__class__.model_type
        return output