Spaces:
Sleeping
Sleeping
Hritik
commited on
Commit
·
3a496ae
1
Parent(s):
7862e49
edit code for nle inference
Browse files- app.py +55 -5
- data_utils/xgpt3_dataset.py +7 -12
- entailment_inference.py +1 -72
app.py
CHANGED
@@ -1,13 +1,63 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
4 |
# True
|
5 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
6 |
# Tesla T4
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
import torch
|
5 |
+
import argparse
|
6 |
+
import pandas as pd
|
7 |
+
import torch.nn as nn
|
8 |
+
from tqdm import tqdm
|
9 |
+
from collections import defaultdict
|
10 |
+
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
|
13 |
+
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
|
14 |
+
from peft import LoraConfig, get_peft_model
|
15 |
+
from data_utils.xgpt3_dataset import MultiModalDataset
|
16 |
+
from utils import batchify
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
from entailment_inference import get_scores
|
20 |
+
|
21 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
22 |
# True
|
23 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
24 |
# Tesla T4
|
25 |
|
26 |
+
tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
|
27 |
+
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
|
28 |
+
processor = MplugOwlProcessor(image_processor, tokenizer)
|
29 |
+
|
30 |
+
|
31 |
+
# Instantiate model
|
32 |
+
model = MplugOwlForConditionalGeneration.from_pretrained(
|
33 |
+
pretrained_ckpt,
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
device_map={'':0}
|
36 |
+
)
|
37 |
+
|
38 |
+
for name, param in model.named_parameters():
|
39 |
+
param.requires_grad = False
|
40 |
+
peft_config = LoraConfig(
|
41 |
+
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
|
42 |
+
inference_mode=True,
|
43 |
+
r=32,
|
44 |
+
lora_alpha=16,
|
45 |
+
lora_dropout=0.05
|
46 |
+
)
|
47 |
+
model = get_peft_model(model, peft_config)
|
48 |
+
model.print_trainable_parameters()
|
49 |
+
with open(trained_ckpt, 'rb') as f:
|
50 |
+
ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
|
51 |
+
model.load_state_dict(ckpt)
|
52 |
+
model = model.to(torch.bfloat16)
|
53 |
+
print('Model Loaded')
|
54 |
|
55 |
+
PROMPT = """The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
56 |
+
Human: <|video|>
|
57 |
+
Human: Does this video entail the description: ""A basketball team walking off the field while the audience claps.""?
|
58 |
+
AI: """
|
59 |
|
60 |
+
valid_data = MultiModalDataset("examples/y5xuvHpDPZQ_000005_000015.mp4", PROMPT, tokenizer, processor, max_length = 256, loss_objective = 'sequential')
|
61 |
+
dataloader = DataLoader(valid_data, pin_memory=True, collate_fn=batchify)
|
62 |
+
score = get_scores(model, tokenizer, dataloader)
|
63 |
+
print(score)
|
data_utils/xgpt3_dataset.py
CHANGED
@@ -36,37 +36,32 @@ def load_jsonl(filename):
|
|
36 |
class MultiModalDataset(Dataset):
|
37 |
"""MultiModal dataset"""
|
38 |
|
39 |
-
def __init__(self,
|
40 |
max_length=2048,
|
41 |
media_tokens=['<image>', '<|video|>'], loss_objective = 'sequential'):
|
42 |
|
43 |
args = get_args()
|
44 |
|
45 |
self.loss_objective = loss_objective
|
46 |
-
if 'sequential' in self.loss_objective:
|
47 |
-
self.dataset = pd.read_csv(input_file)
|
48 |
-
self.dataset = self.dataset.dropna()
|
49 |
-
else:
|
50 |
raise NotImplementedError('dataset loader not implemented for other loss objectives')
|
51 |
|
52 |
-
self.
|
|
|
53 |
self.tokenizer = tokenizer
|
54 |
self.max_length = max_length
|
55 |
self.processor = processor
|
56 |
self.media_tokens = {k: -int(i+1) for i, k in enumerate(media_tokens)}
|
57 |
self.media_lengths = {'<image>': 1+64,'<|video|>': 1+64}
|
58 |
print("num_media_token: ", self.media_lengths)
|
59 |
-
print(len(self.dataset))
|
60 |
self.bucket = {}
|
61 |
|
62 |
def __len__(self):
|
63 |
-
return
|
64 |
|
65 |
def __getitem__(self, index):
|
66 |
-
|
67 |
-
|
68 |
-
videopath = data['videopath']
|
69 |
-
caption = data['caption']
|
70 |
video_input = self.processor(videos=[videopath], num_frames=32, return_tensors='pt') # video_pixel_values
|
71 |
text_input = self._extract_text_token_from_conversation(caption, self.max_length, index)
|
72 |
item = {'video': video_input, 'text': text_input, 'videopath': videopath, 'caption': caption}
|
|
|
36 |
class MultiModalDataset(Dataset):
|
37 |
"""MultiModal dataset"""
|
38 |
|
39 |
+
def __init__(self, videopath, text, tokenizer, processor,
|
40 |
max_length=2048,
|
41 |
media_tokens=['<image>', '<|video|>'], loss_objective = 'sequential'):
|
42 |
|
43 |
args = get_args()
|
44 |
|
45 |
self.loss_objective = loss_objective
|
46 |
+
if 'sequential' not in self.loss_objective:
|
|
|
|
|
|
|
47 |
raise NotImplementedError('dataset loader not implemented for other loss objectives')
|
48 |
|
49 |
+
self.videopath = videopath
|
50 |
+
self.text = text
|
51 |
self.tokenizer = tokenizer
|
52 |
self.max_length = max_length
|
53 |
self.processor = processor
|
54 |
self.media_tokens = {k: -int(i+1) for i, k in enumerate(media_tokens)}
|
55 |
self.media_lengths = {'<image>': 1+64,'<|video|>': 1+64}
|
56 |
print("num_media_token: ", self.media_lengths)
|
|
|
57 |
self.bucket = {}
|
58 |
|
59 |
def __len__(self):
|
60 |
+
return 1
|
61 |
|
62 |
def __getitem__(self, index):
|
63 |
+
videopath = self.videopath
|
64 |
+
caption = self.text
|
|
|
|
|
65 |
video_input = self.processor(videos=[videopath], num_frames=32, return_tensors='pt') # video_pixel_values
|
66 |
text_input = self._extract_text_token_from_conversation(caption, self.max_length, index)
|
67 |
item = {'video': video_input, 'text': text_input, 'videopath': videopath, 'caption': caption}
|
entailment_inference.py
CHANGED
@@ -15,18 +15,7 @@ from peft import LoraConfig, get_peft_model
|
|
15 |
from data_utils.xgpt3_dataset import MultiModalDataset
|
16 |
from utils import batchify
|
17 |
|
18 |
-
parser = argparse.ArgumentParser()
|
19 |
|
20 |
-
parser.add_argument('--input_csv', type = str, required = True, help = 'input json file')
|
21 |
-
parser.add_argument('--output_csv', type = str, help = 'output csv with scores')
|
22 |
-
parser.add_argument('--pretrained_ckpt', type = str, required = True, help = 'pretrained ckpt')
|
23 |
-
parser.add_argument('--trained_ckpt', type = str, help = 'trained ckpt')
|
24 |
-
parser.add_argument('--lora_r', type = int, default = 32)
|
25 |
-
parser.add_argument('--use_lora', action = 'store_true', help = 'lora model')
|
26 |
-
parser.add_argument('--all-params', action = 'store_true', help = 'use all params of the model')
|
27 |
-
parser.add_argument('--batch_size', type = int, default = 32)
|
28 |
-
|
29 |
-
args = parser.parse_args()
|
30 |
softmax = nn.Softmax(dim=2)
|
31 |
|
32 |
def get_entail(logits, input_ids, tokenizer):
|
@@ -47,7 +36,6 @@ def get_entail(logits, input_ids, tokenizer):
|
|
47 |
return entailment
|
48 |
|
49 |
def get_scores(model, tokenizer, dataloader):
|
50 |
-
|
51 |
with torch.no_grad():
|
52 |
for index, inputs in tqdm(enumerate(dataloader)):
|
53 |
for k, v in inputs.items():
|
@@ -60,63 +48,4 @@ def get_scores(model, tokenizer, dataloader):
|
|
60 |
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
|
61 |
logits = outputs['logits']
|
62 |
entail_scores = get_entail(logits, inputs['input_ids'], tokenizer)
|
63 |
-
|
64 |
-
with open(args.output_csv, 'a') as f:
|
65 |
-
writer = csv.writer(f)
|
66 |
-
writer.writerow([inputs['videopaths'][m], inputs['captions'][m], entail_scores[m].item()])
|
67 |
-
print(f"Batch {index} Done")
|
68 |
-
|
69 |
-
def main():
|
70 |
-
|
71 |
-
pretrained_ckpt = args.pretrained_ckpt
|
72 |
-
|
73 |
-
# Processors
|
74 |
-
tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
|
75 |
-
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
|
76 |
-
processor = MplugOwlProcessor(image_processor, tokenizer)
|
77 |
-
|
78 |
-
valid_data = MultiModalDataset(args.input_csv, tokenizer, processor, max_length = 256, loss_objective = 'sequential')
|
79 |
-
dataloader = DataLoader(valid_data, batch_size=args.batch_size, pin_memory=True, collate_fn=batchify)
|
80 |
-
|
81 |
-
# Instantiate model
|
82 |
-
model = MplugOwlForConditionalGeneration.from_pretrained(
|
83 |
-
pretrained_ckpt,
|
84 |
-
torch_dtype=torch.bfloat16,
|
85 |
-
device_map={'':0}
|
86 |
-
)
|
87 |
-
|
88 |
-
if args.use_lora:
|
89 |
-
for name, param in model.named_parameters():
|
90 |
-
param.requires_grad = False
|
91 |
-
if args.all_params:
|
92 |
-
peft_config = LoraConfig(
|
93 |
-
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
|
94 |
-
inference_mode=True,
|
95 |
-
r=args.lora_r,
|
96 |
-
lora_alpha=16,
|
97 |
-
lora_dropout=0.05
|
98 |
-
)
|
99 |
-
else:
|
100 |
-
peft_config = LoraConfig(
|
101 |
-
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)',
|
102 |
-
inference_mode=True,
|
103 |
-
r=args.lora_r,
|
104 |
-
lora_alpha=16,
|
105 |
-
lora_dropout=0.05
|
106 |
-
)
|
107 |
-
|
108 |
-
model = get_peft_model(model, peft_config)
|
109 |
-
model.print_trainable_parameters()
|
110 |
-
|
111 |
-
with open(args.trained_ckpt, 'rb') as f:
|
112 |
-
ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
|
113 |
-
model.load_state_dict(ckpt)
|
114 |
-
model = model.to(torch.bfloat16)
|
115 |
-
print('Model Loaded')
|
116 |
-
|
117 |
-
model.eval()
|
118 |
-
|
119 |
-
get_scores(model, tokenizer, dataloader)
|
120 |
-
|
121 |
-
if __name__ == "__main__":
|
122 |
-
main()
|
|
|
15 |
from data_utils.xgpt3_dataset import MultiModalDataset
|
16 |
from utils import batchify
|
17 |
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
softmax = nn.Softmax(dim=2)
|
20 |
|
21 |
def get_entail(logits, input_ids, tokenizer):
|
|
|
36 |
return entailment
|
37 |
|
38 |
def get_scores(model, tokenizer, dataloader):
|
|
|
39 |
with torch.no_grad():
|
40 |
for index, inputs in tqdm(enumerate(dataloader)):
|
41 |
for k, v in inputs.items():
|
|
|
48 |
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
|
49 |
logits = outputs['logits']
|
50 |
entail_scores = get_entail(logits, inputs['input_ids'], tokenizer)
|
51 |
+
return entail_scores[0].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|