Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
import keras | |
from huggingface_hub import from_pretrained_keras | |
#dfvds | |
model = from_pretrained_keras("hbpkillerX/low_light_img_enhancer", compile=False) | |
#model= tf.saved_model.load("hbpkillerX/low_light_img_enhancer/") | |
def autocontrast(tensor, cutoff=0): | |
tensor = tf.cast(tensor, dtype=tf.float32) | |
min_val = tf.reduce_min(tensor) | |
max_val = tf.reduce_max(tensor) | |
range_val = max_val - min_val | |
adjusted_tensor = tf.clip_by_value(tf.cast(tf.round((tensor - min_val - cutoff) * (255 / (range_val - 2 * cutoff))), tf.uint8), 0, 255) | |
return adjusted_tensor | |
def infer(original_image): | |
image = keras.utils.img_to_array(original_image) | |
image = autocontrast(image) | |
image = image.astype("float32") / 255.0 | |
image = np.expand_dims(image, axis=0) | |
output = model.predict(image) | |
output_image = output[0] * 255.0 | |
output_image = output_image.clip(0, 255) | |
output_image = output_image.reshape( | |
(np.shape(output_image)[0], np.shape(output_image)[1], 3) | |
) | |
output_image = np.uint32(output_image) | |
return output_image | |
iface = gr.Interface( | |
fn=infer, | |
title="Low Light Image Enhancement", | |
description = "Keras Implementation of MIRNet model for light up the dark image ππ", | |
inputs=[gr.inputs.Image(label="image", type="pil", shape=(960, 640))], | |
outputs="image", | |
cache_examples=True) | |