hjp157688 commited on
Commit
02dcc2f
·
verified ·
1 Parent(s): bc28a04

Update pages/文件式文本检测工具.py

Browse files
Files changed (1) hide show
  1. pages/文件式文本检测工具.py +246 -246
pages/文件式文本检测工具.py CHANGED
@@ -1,247 +1,247 @@
1
- import pandas as pd
2
- import streamlit as st
3
- import torch
4
- import os
5
- import torch
6
- import torch.nn as nn
7
- import torch.nn.functional as F
8
- from transformers import BertTokenizer
9
- import appbuilder
10
- from transformers import BertModel
11
- #加载预训练模型
12
- pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
13
- #需要移动到cuda上
14
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
- pretrained.to(device)
16
- #不训练,不需要计算梯度
17
- for param in pretrained.parameters():
18
- param.requires_grad_(False)
19
-
20
- #多头注意力机制
21
- class MultiHeadAttention(nn.Module):
22
- def __init__(self, hidden_size, num_heads):
23
- super(MultiHeadAttention, self).__init__()
24
- # 确保隐藏层特征数能够被头数整除
25
- assert hidden_size % num_heads == 0
26
- self.hidden_size = hidden_size
27
- self.num_heads = num_heads
28
- self.head_dim = hidden_size // num_heads # 计算每个头的维度
29
- # 定义线性层,用于对查询、键、值进行线性变换
30
- self.linear_q = nn.Linear(hidden_size, hidden_size)
31
- self.linear_k = nn.Linear(hidden_size, hidden_size)
32
- self.linear_v = nn.Linear(hidden_size, hidden_size)
33
- self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
34
-
35
- def forward(self, x):
36
- batch_size, seq_len, _ = x.size()
37
- # 对输入进行线性变换,并将其分割为多个头
38
- q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
39
- k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
40
- v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
41
- # 计算注意力分数
42
- scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
43
- attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
44
- # 根据注意力权重对值进行加权求和
45
- context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
46
- out = self.linear_out(context) # 整合多头注意力的输出
47
- return out
48
-
49
- class Model(nn.Module):
50
- def __init__(self):
51
- super(Model, self).__init__()
52
- self.fc1 = nn.Linear(768, 512) # 第一层全连接层
53
- self.fc2 = nn.Linear(512, 256) # 第二层全连接层
54
- self.fc3 = nn.Linear(256, 2) # 第三层全连接层
55
- self.dropout = nn.Dropout(p=0.5)
56
- self.bn1 = nn.BatchNorm1d(512)
57
- self.bn2 = nn.BatchNorm1d(256)
58
- self.activation = nn.ReLU()
59
- self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
60
-
61
- def forward(self, input_ids, attention_mask, token_type_ids):
62
- out = pretrained(input_ids=input_ids,
63
- attention_mask=attention_mask,
64
- token_type_ids=token_type_ids).last_hidden_state
65
-
66
- # 应用多头注意力机制
67
- out = self.multihead_attention(out)
68
- out = out[:, 0] # 提取[CLS]标记的输出
69
-
70
- out = self.activation(self.bn1(self.fc1(out)))
71
- out = self.dropout(out)
72
- out = self.activation(self.bn2(self.fc2(out)))
73
- out = self.dropout(out)
74
- out = self.fc3(out)
75
- out = out.softmax(dim=1)
76
- return out
77
-
78
-
79
- def load_models_and_predict(text, device):
80
- # 加载模型
81
- MacBERT_base_CDialBias = torch.load('models\MacBERT-base-CDialBias.pth')
82
- MacBERT_base_CDialBias.to(device)
83
- MacBERT_base_COLD = torch.load('models\MacBERT-base-CDialBias.pth')
84
- MacBERT_base_COLD.to(device)
85
-
86
- # 获取密钥和ID
87
- os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
88
- app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
89
-
90
- # 初始化agent实例
91
- your_agent = appbuilder.AppBuilderClient(app_id)
92
-
93
- # 创建会话id
94
- conversation_id = your_agent.create_conversation()
95
-
96
- # 加载字典和分词工具
97
- tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
98
-
99
- # 对输入文本进行编码
100
- inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
101
-
102
- # 将输入数据移动到相同的设备上
103
- inputs = {k: v.to(device) for k, v in inputs.items()}
104
-
105
- # 设置模型为评估模式
106
- MacBERT_base_CDialBias.eval()
107
- MacBERT_base_COLD.eval()
108
-
109
- # 调用千帆api获取标签
110
- msg = your_agent.run(conversation_id, text)
111
- answer = msg.content.answer
112
-
113
- # 进行预测
114
- with torch.no_grad():
115
- out1 = MacBERT_base_CDialBias(**inputs)
116
- with torch.no_grad():
117
- out2 = MacBERT_base_COLD(**inputs)
118
-
119
- out1 = torch.argmax(out1, dim=1).item()
120
- out2 = torch.argmax(out2, dim=1).item()
121
- out3 = answer[0]
122
-
123
- # 分析结果
124
- if out3 == "1":
125
- if out1 == out2 == out3 == 1:
126
- result = "这句话具有攻击性和社会偏见"
127
- elif out1 == 0 and out2 == 1:
128
- result = "这句话具有攻击性,但无社会偏见"
129
- elif out1 == 1 and out2 == 0:
130
- result = "这句话不具有攻击性,但具有社会偏见"
131
- else:
132
- result = "这句话具有攻击性"
133
- elif out3 == "0":
134
- if out1 == out2 == out3 == 0:
135
- result = "这句话不具有攻击性和社会偏见"
136
- elif out1 == 0 and out2 == 1:
137
- result = "这句话具有攻击性,但无社会偏见"
138
- elif out1 == 1 and out2 == 0:
139
- result = "这句话不具有攻击性,但具有社会偏见"
140
- else:
141
- result = "这句话不具有攻击性"
142
- return result
143
-
144
- # 页面配置
145
- st.set_page_config(page_title="文件式文本检测工具")
146
- st.title("批量检测攻击性和偏见")
147
-
148
- with st.sidebar:
149
- # 初始化session state
150
- if 'logged_in' not in st.session_state:
151
- st.session_state.logged_in = False
152
-
153
- # 用户名和密码输入
154
- username = st.sidebar.text_input('用户名')
155
- password = st.sidebar.text_input('密码', type='password')
156
-
157
- # 登录按钮
158
- if st.sidebar.button('登录'):
159
- # 这里可以添加验证逻辑,例如检查用户名和密码是否正确
160
- if username == 'admin' and password == '12345':
161
- st.session_state.logged_in = True
162
- st.sidebar.success('登录成功!')
163
-
164
-
165
- else:
166
- st.error('用户名或密码错误,请重试。')
167
- st.stop()
168
- st.divider()
169
-
170
- # 文件上传
171
- file = st.file_uploader("上传你的CSV文件", type=["csv"])
172
-
173
- if file is not None:
174
- # 读取文件
175
- df = pd.read_csv(file)
176
- st.dataframe(df)
177
-
178
- # 输入列名
179
- column = st.text_input("请输入需要判断的内容的列名")
180
-
181
- # 添加保存结果的选项
182
- save_results = st.checkbox("保存结果为CSV文件")
183
-
184
- if st.button("开始检测") and st.session_state.logged_in == True:
185
- if column not in df.columns:
186
- st.error(f"列名 '{column}' 不存在于数据集中,请检查并重新输入。")
187
- else:
188
- # 创建一个新的DataFrame来存储结果
189
- results_df = pd.DataFrame(columns=['检测文本', '检测结果'])
190
-
191
- # 显示进度条
192
- progress_bar = st.progress(0)
193
-
194
- # 初始化停止标志
195
- stop_flag = False
196
-
197
- # 添加停止按钮
198
- stop_button = st.button("停止检测")
199
-
200
- for i, (index, row) in enumerate(df.iterrows()):
201
-
202
- # 如果用户点击了停止按钮
203
- if stop_button:
204
- stop_flag = True
205
- break
206
- # 获取特定列的内容
207
- text = row[column]
208
-
209
- # 进行预测
210
- with st.spinner("AI正在思考中,请稍等..."):
211
- result = load_models_and_predict(text, device)
212
-
213
- # 将结果添加到新的DataFrame中
214
- results_df.loc[i] = [text, result]
215
- r = results_df.loc[i]
216
-
217
- # 显示结果
218
- st.dataframe(r)
219
-
220
- st.divider()
221
-
222
- # 更新进度条
223
- progress_bar.progress((i + 1) / len(df))
224
-
225
- # 完成处理
226
- progress_bar.empty()
227
-
228
- # 如果用户点击了停止按钮
229
- if stop_flag:
230
- st.warning("检测已停止。")
231
- else:
232
- st.success("所有文本已检测完成!")
233
-
234
- # 如果用户选择了保存结果
235
- if (save_results and not stop_flag) or st.button("保存结果为CSV文件"):
236
- # 提供下载链接
237
- csv_result = results_df.to_csv(index=False)
238
- st.download_button(
239
- label="下载结果",
240
- data=csv_result,
241
- file_name='results.csv',
242
- mime='text/csv'
243
- )
244
- elif st.button("开始检测") and st.session_state.logged_in == False:
245
- st.error("请先登录!")
246
- st.stop()
247
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import torch
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from transformers import BertTokenizer
9
+ import appbuilder
10
+ from transformers import BertModel
11
+ #加载预训练模型
12
+ pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
13
+ #需要移动到cuda上
14
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
+ pretrained.to(device)
16
+ #不训练,不需要计算梯度
17
+ for param in pretrained.parameters():
18
+ param.requires_grad_(False)
19
+
20
+ #多头注意力机制
21
+ class MultiHeadAttention(nn.Module):
22
+ def __init__(self, hidden_size, num_heads):
23
+ super(MultiHeadAttention, self).__init__()
24
+ # 确保隐藏层特征数能够被头数整除
25
+ assert hidden_size % num_heads == 0
26
+ self.hidden_size = hidden_size
27
+ self.num_heads = num_heads
28
+ self.head_dim = hidden_size // num_heads # 计算每个头的维度
29
+ # 定义线性层,用于对查询、键、值进行线性变换
30
+ self.linear_q = nn.Linear(hidden_size, hidden_size)
31
+ self.linear_k = nn.Linear(hidden_size, hidden_size)
32
+ self.linear_v = nn.Linear(hidden_size, hidden_size)
33
+ self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
34
+
35
+ def forward(self, x):
36
+ batch_size, seq_len, _ = x.size()
37
+ # 对输入进行线性变换,并将其分割为多个头
38
+ q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
39
+ k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
40
+ v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
41
+ # 计算注意力分数
42
+ scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
43
+ attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
44
+ # 根据注意力权重对值进行加权求和
45
+ context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
46
+ out = self.linear_out(context) # 整合多头注意力的输出
47
+ return out
48
+
49
+ class Model(nn.Module):
50
+ def __init__(self):
51
+ super(Model, self).__init__()
52
+ self.fc1 = nn.Linear(768, 512) # 第一层全连接层
53
+ self.fc2 = nn.Linear(512, 256) # 第二层全连接层
54
+ self.fc3 = nn.Linear(256, 2) # 第三层全连接层
55
+ self.dropout = nn.Dropout(p=0.5)
56
+ self.bn1 = nn.BatchNorm1d(512)
57
+ self.bn2 = nn.BatchNorm1d(256)
58
+ self.activation = nn.ReLU()
59
+ self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
60
+
61
+ def forward(self, input_ids, attention_mask, token_type_ids):
62
+ out = pretrained(input_ids=input_ids,
63
+ attention_mask=attention_mask,
64
+ token_type_ids=token_type_ids).last_hidden_state
65
+
66
+ # 应用多头注意力机制
67
+ out = self.multihead_attention(out)
68
+ out = out[:, 0] # 提取[CLS]标记的输出
69
+
70
+ out = self.activation(self.bn1(self.fc1(out)))
71
+ out = self.dropout(out)
72
+ out = self.activation(self.bn2(self.fc2(out)))
73
+ out = self.dropout(out)
74
+ out = self.fc3(out)
75
+ out = out.softmax(dim=1)
76
+ return out
77
+
78
+
79
+ def load_models_and_predict(text, device):
80
+ # 加载模型
81
+ MacBERT_base_CDialBias = torch.load('hjp157688\ROCAI\models\MacBERT-base-CDialBias.pth')
82
+ MacBERT_base_CDialBias.to(device)
83
+ MacBERT_base_COLD = torch.load('hjp157688\ROCAI\models\MacBERT-base-CDialBias.pth')
84
+ MacBERT_base_COLD.to(device)
85
+
86
+ # 获取密钥和ID
87
+ os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
88
+ app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
89
+
90
+ # 初始化agent实例
91
+ your_agent = appbuilder.AppBuilderClient(app_id)
92
+
93
+ # 创建会话id
94
+ conversation_id = your_agent.create_conversation()
95
+
96
+ # 加载字典和分词工具
97
+ tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
98
+
99
+ # 对输入文本进行编码
100
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
101
+
102
+ # 将输入数据移动到相同的设备上
103
+ inputs = {k: v.to(device) for k, v in inputs.items()}
104
+
105
+ # 设置模型为评估模式
106
+ MacBERT_base_CDialBias.eval()
107
+ MacBERT_base_COLD.eval()
108
+
109
+ # 调用千帆api获取标签
110
+ msg = your_agent.run(conversation_id, text)
111
+ answer = msg.content.answer
112
+
113
+ # 进行预测
114
+ with torch.no_grad():
115
+ out1 = MacBERT_base_CDialBias(**inputs)
116
+ with torch.no_grad():
117
+ out2 = MacBERT_base_COLD(**inputs)
118
+
119
+ out1 = torch.argmax(out1, dim=1).item()
120
+ out2 = torch.argmax(out2, dim=1).item()
121
+ out3 = answer[0]
122
+
123
+ # 分析结果
124
+ if out3 == "1":
125
+ if out1 == out2 == out3 == 1:
126
+ result = "这句话具有攻击性和社会偏见"
127
+ elif out1 == 0 and out2 == 1:
128
+ result = "这句话具有攻击性,但无社会偏见"
129
+ elif out1 == 1 and out2 == 0:
130
+ result = "这句话不具有攻击性,但具有社会偏见"
131
+ else:
132
+ result = "这句话具有攻击性"
133
+ elif out3 == "0":
134
+ if out1 == out2 == out3 == 0:
135
+ result = "这句话不具有攻击性和社会偏见"
136
+ elif out1 == 0 and out2 == 1:
137
+ result = "这句话具有攻击性,但无社会偏见"
138
+ elif out1 == 1 and out2 == 0:
139
+ result = "这句话不具有攻击性,但具有社会偏见"
140
+ else:
141
+ result = "这句话不具有攻击性"
142
+ return result
143
+
144
+ # 页面配置
145
+ st.set_page_config(page_title="文件式文本检测工具")
146
+ st.title("批量检测攻击性和偏见")
147
+
148
+ with st.sidebar:
149
+ # 初始化session state
150
+ if 'logged_in' not in st.session_state:
151
+ st.session_state.logged_in = False
152
+
153
+ # 用户名和密码输入
154
+ username = st.sidebar.text_input('用户名')
155
+ password = st.sidebar.text_input('密码', type='password')
156
+
157
+ # 登录按钮
158
+ if st.sidebar.button('登录'):
159
+ # 这里可以添加验证逻辑,例如检查用户名和密码是否正确
160
+ if username == 'admin' and password == '12345':
161
+ st.session_state.logged_in = True
162
+ st.sidebar.success('登录成功!')
163
+
164
+
165
+ else:
166
+ st.error('用户名或密码错误,请重试。')
167
+ st.stop()
168
+ st.divider()
169
+
170
+ # 文件上传
171
+ file = st.file_uploader("上传你的CSV文件", type=["csv"])
172
+
173
+ if file is not None:
174
+ # 读取文件
175
+ df = pd.read_csv(file)
176
+ st.dataframe(df)
177
+
178
+ # 输入列名
179
+ column = st.text_input("请输入需要判断的内容的列名")
180
+
181
+ # 添加保存结果的选项
182
+ save_results = st.checkbox("保存结果为CSV文件")
183
+
184
+ if st.button("开始检测") and st.session_state.logged_in == True:
185
+ if column not in df.columns:
186
+ st.error(f"列名 '{column}' 不存在于数据集中,请检查并重新输入。")
187
+ else:
188
+ # 创建一个新的DataFrame来存储结果
189
+ results_df = pd.DataFrame(columns=['检测文本', '检测结果'])
190
+
191
+ # 显示进度条
192
+ progress_bar = st.progress(0)
193
+
194
+ # 初始化停止标志
195
+ stop_flag = False
196
+
197
+ # 添加停止按钮
198
+ stop_button = st.button("停止检测")
199
+
200
+ for i, (index, row) in enumerate(df.iterrows()):
201
+
202
+ # 如果用户点击了停止按钮
203
+ if stop_button:
204
+ stop_flag = True
205
+ break
206
+ # 获取特定列的内容
207
+ text = row[column]
208
+
209
+ # 进行预测
210
+ with st.spinner("AI正在思考中,请稍等..."):
211
+ result = load_models_and_predict(text, device)
212
+
213
+ # 将结果添加到新的DataFrame中
214
+ results_df.loc[i] = [text, result]
215
+ r = results_df.loc[i]
216
+
217
+ # 显示结果
218
+ st.dataframe(r)
219
+
220
+ st.divider()
221
+
222
+ # 更新进度条
223
+ progress_bar.progress((i + 1) / len(df))
224
+
225
+ # 完成处理
226
+ progress_bar.empty()
227
+
228
+ # 如果用户点击了停止按钮
229
+ if stop_flag:
230
+ st.warning("检测已停止。")
231
+ else:
232
+ st.success("所有文本已检测完成!")
233
+
234
+ # 如果用户选择了保存结果
235
+ if (save_results and not stop_flag) or st.button("保存结果为CSV文件"):
236
+ # 提供下载链接
237
+ csv_result = results_df.to_csv(index=False)
238
+ st.download_button(
239
+ label="下载结果",
240
+ data=csv_result,
241
+ file_name='results.csv',
242
+ mime='text/csv'
243
+ )
244
+ elif st.button("开始检测") and st.session_state.logged_in == False:
245
+ st.error("请先登录!")
246
+ st.stop()
247