Spaces:
Runtime error
Runtime error
File size: 13,562 Bytes
44db343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
from vocab import Vocab
from noise import SynthesizeData
import os
import sys
import ray
import re
import time
from datetime import datetime as dt
sys.path.append("..")
import numpy as np
from params import PERCENT_NOISE, NUM_CPUS, NUM_PROCESSES
from utils.logger import get_logger
from viet_text_tools import normalize_diacritics
from transformers import AutoTokenizer
CHAR_TRANSFORMER_MAX_SEQ_LEN = 512
tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-word-base", use_fast=False)
logger = get_logger("./log/prepare_data.log")
@ray.remote
class PrepareActor(object):
def __init__(self, id, lang, data_root='../data', corpus="binhbq") -> None:
self.data_root, self.lang, self.corpus = data_root, lang, corpus
self.id = id
self.data_dir = f'{data_root}/{corpus}'
def open_files(self):
self.train_noise_file_name = f'{self.corpus}.train.noise' + str(self.id)
self.train_file_name = f'{self.corpus}.train' + str(self.id)
self.train_onehot_file_name = f'{self.corpus}.onehot.train' + str(self.id)
self.train_length_file_name = f'{self.corpus}.length.train' + str(self.id)
self.train_file_path = self.data_dir + '/' + self.train_file_name
self.train_noise_file_path = self.data_dir + '/' + self.train_noise_file_name
self.train_onehot_file_path = self.data_dir + '/' + self.train_onehot_file_name
self.train_length_file_path = self.data_dir + '/' + self.train_length_file_name
self.train_file = open(self.train_file_path, 'w', encoding='utf-8')
self.train_noise_file = open(self.train_noise_file_path, 'w', encoding='utf-8')
self.train_onehot_file = open(self.train_onehot_file_path, 'w', encoding='utf-8')
self.train_length_file = open(self.train_length_file_path, 'w', encoding='utf-8')
self.valid_file_name = f'{self.corpus}.valid' + str(self.id)
self.valid_noise_file_name = f'{self.corpus}.valid.noise' + str(self.id)
self.valid_onehot_file_name = f'{self.corpus}.onehot.valid' + str(self.id)
self.valid_length_file_name = f'{self.corpus}.length.valid' + str(self.id)
self.valid_file_path = self.data_dir + '/' + self.valid_file_name
self.valid_noise_file_path = self.data_dir + '/' + self.valid_noise_file_name
self.valid_onehot_file_path = self.data_dir + '/' + self.valid_onehot_file_name
self.valid_length_file_path = self.data_dir + '/' + self.valid_length_file_name
self.valid_file = open(self.valid_file_path, 'w', encoding='utf-8')
self.valid_noise_file = open(self.valid_noise_file_path, 'w', encoding='utf-8')
self.valid_onehot_file = open(self.valid_onehot_file_path, 'w', encoding='utf-8')
self.valid_length_file = open(self.valid_length_file_path, 'w', encoding='utf-8')
self.test_file_name = f'{self.corpus}.test' + str(self.id)
self.test_noise_file_name = f'{self.corpus}.test.noise' + str(self.id)
self.test_onehot_file_name = f'{self.corpus}.onehot.test' + str(self.id)
self.test_length_file_name = f'{self.corpus}.length.test' + str(self.id)
self.test_file_path = self.data_dir + '/' + self.test_file_name
self.test_noise_file_path = self.data_dir + '/' + self.test_noise_file_name
self.test_onehot_file_path = self.data_dir + '/' + self.test_onehot_file_name
self.test_length_file_path = self.data_dir + '/' + self.test_length_file_name
self.test_file = open(self.test_file_path, 'w', encoding='utf-8')
self.test_noise_file = open(self.test_noise_file_path, 'w', encoding='utf-8')
self.test_onehot_file = open(self.test_onehot_file_path, 'w', encoding='utf-8')
self.test_length_file = open(self.test_length_file_path, 'w', encoding='utf-8')
def close_files(self):
if self.train_noise_file:
self.train_noise_file.close()
if self.train_onehot_file:
self.train_onehot_file.close()
if self.train_length_file:
self.train_length_file.close()
if self.train_file:
self.train_file.close()
if self.test_noise_file:
self.test_noise_file.close()
if self.test_onehot_file:
self.test_onehot_file.close()
if self.test_length_file:
self.test_length_file.close()
if self.test_file:
self.test_file.close()
if self.valid_noise_file:
self.valid_noise_file.close()
if self.valid_onehot_file:
self.valid_onehot_file.close()
if self.valid_length_file:
self.valid_length_file.close()
if self.valid_file:
self.valid_file.close()
def prepare_subword_sents_and_vocab(self, lines: ray.data.Dataset):
vocab = Vocab(self.lang)
self.subword_sents = []
print(f"{dt.now()} PrepareActor[{self.id}].prepare_sublist_and_vocab() BEGIN...")
for line in lines.iter_rows():
line = line.strip("\n")
words = line.split(" ")
###
if len(words) > 150:
splited_lines = re.split("[.;]+", line)
for splited_line in splited_lines:
words = splited_line.split(" ")
if len(words) < 10 or len(words) > 150:
continue
words = [normalize_diacritics(word) for word in words]
vocab.update_subword_freq(words)
splited_line = " ".join(words)
self.subword_sents.append(splited_line)
continue
###
if len(words) < 10:
continue
words = [normalize_diacritics(word) for word in words]
line = " ".join(words)
vocab.update_subword_freq(words)
self.subword_sents.append(line)
print(f"{dt.now()} PrepareActor[{self.id}].prepare_sublist_and_vocab() COMPLETED...")
return vocab
def gen_noised_and_onehot(self, noiser:SynthesizeData = None):
print(f"{dt.now()} PrepareActor[{self.id}].gen_training_data() BEGIN...")
self.open_files()
logger = get_logger(f"log/prepare_data_worker{self.id}.log")
assert noiser != None
self.noiser = noiser
np.random.seed(2001)
np.random.shuffle(self.subword_sents)
train_examples = 0
#### Train 0.89 Valid 0.01 Test 0.10
max_train_examples = int(0.89 * len(self.subword_sents))
max_valid_examples = int(0.90 * len(self.subword_sents))
for line in self.subword_sents:
train_examples += 1
if train_examples < max_train_examples:
data_for = "train"
elif train_examples < max_valid_examples:
data_for = "valid"
else:
data_for = "test"
if len(line) > (CHAR_TRANSFORMER_MAX_SEQ_LEN - 2):
continue
normal_noise, normal_onehot = self.noiser.add_normal_noise(
line, percent_err=PERCENT_NOISE)
split_merge_noise, split_merge_onehot = self.noiser.add_split_merge_noise(
line, percent_err=PERCENT_NOISE, percent_normal_err=PERCENT_NOISE)
la = len(normal_noise)
lb = len(split_merge_noise)
if la > (CHAR_TRANSFORMER_MAX_SEQ_LEN - 2):
logger.log(f"INFO: Noised longer than Transformer's max limit (NORMAL NOISE).")
logger.log(f"TEXT: {normal_noise}")
continue
if lb > (CHAR_TRANSFORMER_MAX_SEQ_LEN - 2):
logger.log(f"INFO: Noised longer than Transformer's max limit (SPLIT MERGE NOISE).")
logger.log(f"TEXT: {split_merge_noise}")
continue
if data_for == "train":
self.train_noise_file.write(normal_noise + '\n')
self.train_noise_file.write(split_merge_noise + '\n')
self.train_onehot_file.write(normal_onehot + '\n')
self.train_onehot_file.write(split_merge_onehot + '\n')
self.train_file.write(line + "\n")
self.train_length_file.write(str(la) + "\n")
self.train_length_file.write(str(lb) + "\n")
elif data_for == "test":
self.test_noise_file.write(normal_noise + '\n')
self.test_noise_file.write(split_merge_noise + '\n')
self.test_onehot_file.write(normal_onehot + '\n')
self.test_onehot_file.write(split_merge_onehot + '\n')
self.test_file.write(line + "\n")
self.test_length_file.write(str(la) + "\n")
self.test_length_file.write(str(lb) + "\n")
else:
self.valid_noise_file.write(normal_noise + '\n')
self.valid_noise_file.write(split_merge_noise + '\n')
self.valid_onehot_file.write(normal_onehot + '\n')
self.valid_onehot_file.write(split_merge_onehot + '\n')
self.valid_file.write(line + "\n")
self.valid_length_file.write(str(la) + "\n")
self.valid_length_file.write(str(lb) + "\n")
print(f"{dt.now()} PrepareActor[{self.id}].gen_training_data() COMPLETED...")
self.close_files()
class PrepareDataset:
def __init__(self, data_root='../data', lang='vi', corpus='binhvq'):
self.data_root, self.lang, self.corpus = data_root, lang, corpus
self.data_dir = f'{data_root}/{corpus}'
self.vocab = Vocab(self.lang)
# Number of CPUS
self.MAX_CPUS = 12
self.NUM_CPUS = NUM_CPUS if NUM_CPUS < self.MAX_CPUS else self.MAX_CPUS
ray.init(num_cpus=NUM_CPUS)
print(f"{dt.now()} PrepareDataset: Initiating {NUM_PROCESSES} PrepareActor")
self.actors = [PrepareActor.remote(i, lang, self.data_root, self.corpus) for i in range(NUM_PROCESSES)]
self.vocab_pickle_name = f'{self.corpus}.vocab.pkl'
self.vocab_pickle_path = self.data_dir + '/' + self.vocab_pickle_name
self.vocab_dict_name = f'{self.corpus}.dict.txt'
self.vocab_dict_path = self.data_dir + '/' + self.vocab_dict_name
def build_vocab_and_subwords(self, ray_ds: ray.data.Dataset):
print(f"{dt.now()} PrepareDataset.build_vocab_and_subwords()")
shards = ray_ds.split(n = NUM_PROCESSES)
subword_and_vocab_refs = [actor.prepare_subword_sents_and_vocab.remote(
shard) for actor, shard in zip(self.actors, shards)]
subwords_and_vocabs = ray.get(subword_and_vocab_refs)
# Return results is vocab
for i in range(NUM_PROCESSES):
self.vocab.merge_sub_vocabs(subwords_and_vocabs[i])
def build_noised_and_onehot(self):
print(f"{dt.now()} PrepareDataset.build_noised_and_onehot.remote() BEGIN...")
noiser = SynthesizeData(self.vocab)
noised_and_onehot_refs = [actor.gen_noised_and_onehot.remote(noiser) \
for actor in self.actors]
_ = ray.get(noised_and_onehot_refs)
print(f"{dt.now()} PrepareDataset.build_noised_and_onehot.remote() COMPLETE !!!")
print(f"{dt.now()} PrepareDataset.build_noised_and_onehot(): Writing to noised and onehot files!!!")
def prepare_data(self, in_file_name='vi_wiki.data.txt'):
print(f"{dt.now()} PrepareDataset.prepare_data(): open_files()")
self.in_file_path = self.data_dir + '/' + in_file_name
if not os.path.exists(self.in_file_path):
print(f"{dt.now()} PrepareDataset.prepare_data(): Cannot find input file!!!")
print(f'File path: {self.in_file_path}')
return
print(f"{dt.now()} PrepareDataset.prepare_data(): Processing file part by part ...")
with open(self.in_file_path, 'r', encoding='utf-8') as ifile:
lines = ifile.readlines()
ray_ds = ray.data.from_items(lines)
del lines
print(f"{dt.now()} PrepareDataset.prepare_data(): Building Vocabulary...")
self.build_vocab_and_subwords(ray_ds)
self.vocab.build_vocab(topk=100000)
print(f"{dt.now()} PrepareDataset.prepare_data(): Writing Vocabulary to text file...")
self.vocab.save_dict_text(self.vocab_dict_path)
print(f"{dt.now()} PrepareDataset.prepare_data(): Writing Vocabulary to pickle file...")
self.vocab.save_vocab_dict(self.vocab_pickle_path)
print(f"{dt.now()} PrepareDataset.prepare_data(): Gen train noised and onehot...")
self.build_noised_and_onehot()
print(f"{dt.now()} PrepareDataset - Complete preparing dataset!!!")
if __name__ == "__main__":
import argparse
description = '''
prepare_dataset.py:
Usage: python prepare_dataset.py --dataset vi_wiki --file vi_wiki.data.txt --test False
'''
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--file', type=str, default='corpus-small.txt')
parser.add_argument('--corpus', type=str, default='binhvq')
parser.add_argument('--data_root', type=str, default="../data")
args = parser.parse_args()
creater = PrepareDataset(data_root = args.data_root, corpus=args.corpus)
start_time = time.time()
creater.prepare_data(args.file)
end_time = time.time()
print(f"Time consumed for generate data: {end_time - start_time}")
|