spelling-correction / correct.py
hoang1007's picture
Upload 69 files
44db343
raw
history blame
2.55 kB
import os
from params import *
from dataset.vocab import Vocab
from dataset.util import load_dataset, load_vsec_dataset
if __name__ == "__main__":
import argparse
description = '''
Corrector:
Usage: python corrector.py --model tfmwtr --data_path ./data --dataset binhvq
Params:
--model
tfmwtr - Transformer with Tokenization Repair
--data_path: default to ./data
--dataset: default to 'binhvq'
'''
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--model', type=str, default='tfmwtr')
parser.add_argument('--data_path', type=str, default='./data')
parser.add_argument('--dataset', type=str, default='binhvq')
parser.add_argument('--test_dataset', type=str, default='binhvq')
parser.add_argument("--beams", type=int, default=2)
parser.add_argument("--fraction", type=float, default= 1.0)
parser.add_argument('--text', type=str, default='Bình mnh ơi day ch ưa, café xáng vớitôi dược không?')
args = parser.parse_args()
dataset_path = os.path.join(args.data_path, f'{args.test_dataset}')
weight_ext = 'pth'
checkpoint_dir = os.path.join(args.data_path, f'checkpoints/{args.model}')
weight_path = os.path.join(checkpoint_dir, f'{args.dataset}.weights.{weight_ext}')
vocab_path = os.path.join(args.data_path, f'binhvq/binhvq.vocab.pkl')
correct_file = f'{args.test_dataset}.test'
incorrect_file = f'{args.test_dataset}.test.noise'
length_file = f'{args.dataset}.length.test'
if args.test_dataset != "vsec":
test_data = load_dataset(base_path=dataset_path, corr_file=correct_file, incorr_file=incorrect_file,
length_file=length_file)
else:
test_data = load_vsec_dataset(base_path=dataset_path, corr_file=correct_file, incorr_file=incorrect_file)
length_of_data = len(test_data)
test_data = test_data[0 : int(args.fraction * length_of_data) ]
vocab = Vocab()
vocab.load_vocab_dict(vocab_path)
from dataset.autocorrect_dataset import SpellCorrectDataset
from models.corrector import Corrector
from models.model import ModelWrapper
from models.util import load_weights
test_dataset = SpellCorrectDataset(dataset=test_data)
model_wrapper = ModelWrapper(args.model, vocab)
corrector = Corrector(model_wrapper)
load_weights(corrector.model, weight_path)
corrector.evaluate(test_dataset, beams = args.beams)