hoang1007's picture
Upload 69 files
44db343
raw
history blame
16.7 kB
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from termcolor import colored
from transformers.optimization import AdamW
from itertools import chain
import sys
sys.path.append("..")
from transformers.optimization import get_linear_schedule_with_warmup
import os
import math
import time
from datetime import datetime as dt
from torch.utils.data import DataLoader
from params import *
from utils.logger import get_logger
from models.model import ModelWrapper
from models.sampler import RandomBatchSampler, BucketBatchSampler
from utils.metrics import get_metric_for_tfm
from accelerate import Accelerator
from dataset.autocorrect_dataset import SpellCorrectDataset
from dataset.util import load_epoch_dataset
class Trainer():
def __init__(self, model_wrapper: ModelWrapper, data_path, dataset_name, valid_dataset: Dataset):
self.model_wrapper = model_wrapper
self.model = model_wrapper.model
self.model_name = model_wrapper.model_name
self.data_path = data_path
self.incorrect_file = f'{dataset_name}.train.noise'
self.correct_file = f'{dataset_name}.train'
self.length_file = f'{dataset_name}.length.train'
train_dataset = load_epoch_dataset(data_path, self.correct_file, \
self.incorrect_file, self.length_file, 1, EPOCHS)
train_dataset = SpellCorrectDataset(dataset=train_dataset)
self.train_dataset = train_dataset
self.valid_dataset = valid_dataset
if not BUCKET_SAMPLING:
self.train_sampler = RandomBatchSampler(train_dataset, TRAIN_BATCH_SIZE)
self.valid_sampler = RandomBatchSampler(valid_dataset, VALID_BATCH_SIZE, shuffle = False)
else:
self.train_sampler = BucketBatchSampler(train_dataset)
self.valid_sampler = BucketBatchSampler(valid_dataset, shuffle = False)
self.train_data = DataLoader(dataset=train_dataset, batch_sampler=self.train_sampler,
collate_fn=model_wrapper.collator.collate, num_workers=2, pin_memory=True)
self.valid_data = DataLoader(dataset=valid_dataset, batch_sampler=self.valid_sampler,
collate_fn=model_wrapper.collator.collate, num_workers=2, pin_memory=True)
self.total_training_steps = len(self.train_dataset) * EPOCHS
self.checkpoint_cycle = math.ceil((len(self.train_data) * EPOCHS / CHECKPOINT_FREQ) / PRINT_PER_ITER) * PRINT_PER_ITER
self.print_every = PRINT_PER_ITER
self.iter = 0
self.scratch_iter = 0
self.start_epoch = 1
self.best_F1 = -1
self.current_epoch = 1
self.progress_epoch = None
self.max_epochs = EPOCHS
self.learning_rate = MAX_LR
self.optimizer = AdamW(self.model.parameters(),
lr=self.learning_rate,
weight_decay=0.01,
correct_bias=False)
self.num_warmup_steps = WARMUP_PERCENT * self.total_training_steps
self.scheduler = get_linear_schedule_with_warmup(
self.optimizer, num_warmup_steps=self.num_warmup_steps, num_training_steps=self.total_training_steps)
self.train_losses = []
self.accelerator = Accelerator(cpu= True if DEVICE == "cpu" else False)
self.device = self.accelerator.device
self.total_fw_time = 0
log_path = LOG + \
f'/pytorch.{self.model_name}.lr.{self.learning_rate}.train.log'
if log_path:
self.logger = get_logger(log_path)
self.logger.log(f'DEVICE is: {self.device}')
self.logger.log(
f"============TOTAL TRAINING STEPS===========\n{self.total_training_steps}")
self.logger.log(f"CHECKPOINT CYCLE: {self.checkpoint_cycle} ITER")
def load_lazy_dataset(self, epoch):
train_dataset = load_epoch_dataset(self.data_path, self.correct_file,\
self.incorrect_file, self.length_file, epoch, EPOCHS)
self.train_dataset = SpellCorrectDataset(dataset=train_dataset)
if not BUCKET_SAMPLING:
self.train_sampler = RandomBatchSampler(self.train_dataset, TRAIN_BATCH_SIZE)
else:
self.train_sampler = BucketBatchSampler(self.train_dataset)
self.train_data = DataLoader(dataset=self.train_dataset, batch_sampler=self.train_sampler,
collate_fn=self.model_wrapper.collator.collate,\
num_workers=2, pin_memory=True)
def step(self, batch, training=True):
if training:
self.model.train()
start = time.time()
outputs = self.model(batch['batch_src'], batch['attn_masks'], batch['batch_tgt']) # outputs.logits , outputs.loss
self.total_fw_time += time.time() - start
loss = outputs['loss']
batch_loss = outputs['loss'].cpu().detach().numpy()
self.optimizer.zero_grad()
self.accelerator.backward(loss)
# Gradient clipping is not in AdamW anymore (so you can use amp without issue)
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step(self.iter)
return batch_loss
else:
self.model.eval()
outputs = self.model(batch['batch_src'], batch['attn_masks'], batch['batch_tgt'])
return outputs['loss'], outputs['preds'], \
batch['batch_tgt'].cpu().detach().numpy(), batch['lengths']
def train(self):
self.logger.log("Loading model to device")
self.model, self.optimizer, self.scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.scheduler)
self.logger.log(f"Begin training from epoch: {self.start_epoch}")
total_time = 0
total_loss = 0
overall_loss, overall_iter = 0, 0
patience = 0
for epoch_id in range(self.start_epoch, self.max_epochs + 1):
self.current_epoch = epoch_id
if self.progress_epoch and self.progress_epoch == epoch_id:
self.progress_epoch = None
elif self.current_epoch != 1:
self.load_lazy_dataset(epoch_id)
self.logger.log(f"Loaded lazy dataset {epoch_id} / {self.max_epochs}")
else:
pass
self.logger.log(f"START OF EPOCH {epoch_id}")
for step, batch in enumerate(self.train_data):
start = time.time()
self.iter += batch['batch_tgt'].size(0)
self.scratch_iter += batch['batch_tgt'].size(0)
overall_iter += batch['batch_tgt'].size(0)
batch_loss = self.step(batch)
total_time += time.time() - start
total_loss += batch_loss
overall_loss += batch_loss
if step % self.print_every == 0:
info = '{} - epoch: {} - step: {} - iter: {:08d}/{:08d} - train loss: {:.5f} - lr: {:.5e} - {} time: {:.2f}s'.format(
colored(str(dt.now()),"green"),
epoch_id,
step,
self.iter,
self.total_training_steps,
total_loss / self.print_every,
self.optimizer.param_groups[0]['lr'],
self.device,
total_time)
total_loss = 0
total_time = 0
self.logger.log(info)
if step % self.checkpoint_cycle == 0:
torch.cuda.empty_cache()
if step == 0:
continue
# <---- validate ----->
val_loss, val_accu, val_mean_time = self.validate()
info = '{} - epoch: {} - valid loss: {:.5f} - valid accuracy: {:.4f}'.format(
colored(str(dt.now()),"green"), epoch_id, val_loss, val_accu)
self.logger.log(info)
if overall_iter != 0 and overall_loss != 0:
self.logger.log(f"Overall trainning loss between two checkpoints: {overall_loss / overall_iter}")
overall_loss, overall_iter = 0, 0
if val_accu > self.best_F1:
self.best_F1 = val_accu
info = 'Saving weights to disk......'
self.logger.log(info)
self.save_weights(self.checkpoint_dir, epoch_id, self.best_F1)
info = 'Saving checkpoint to disk......'
self.logger.log(info)
self.save_checkpoint(
self.checkpoint_dir, epoch_id, self.best_F1)
patience = 0
else:
patience += 1
self.logger.log("Mean forward time: {:.5f}".format(
self.total_fw_time / VALID_BATCH_SIZE))
self.total_fw_time = 0
if patience >= PATIENCE:
break
torch.cuda.empty_cache()
## Validation before next epoch
torch.cuda.empty_cache()
val_loss, val_accu, val_mean_time = self.validate()
info = '{} - epoch: {} - valid loss: {:.5f} - valid accuracy: {:.4f}'.format(
colored(str(dt.now()),"green"), epoch_id, val_loss, val_accu)
self.logger.log(info)
if overall_iter != 0 and overall_loss != 0:
self.logger.log(f"Overall trainning loss between two checkpoints: {overall_loss / overall_iter}")
overall_loss, overall_iter = 0, 0
if val_accu > self.best_F1:
self.best_F1 = val_accu
info = 'Saving weights to disk......'
self.logger.log(info)
self.save_weights(self.checkpoint_dir, epoch_id, self.best_F1)
info = 'Saving checkpoint to disk......'
self.logger.log(info)
self.save_checkpoint(
self.checkpoint_dir, epoch_id, self.best_F1)
patience = 0
else:
patience += 1
self.logger.log("Mean forward time: {:.5f}".format(
self.total_fw_time / VALID_BATCH_SIZE))
self.total_fw_time = 0
if patience >= PATIENCE:
break
torch.cuda.empty_cache()
self.scratch_iter = 0
self.logger.log(f"END OF EPOCH {epoch_id}")
self.logger.log("Train complete!")
def validate(self):
total_loss = 0
valid_loss = 0
valid_time = 0
total_time = 0
total_examples = 0
num_correct, num_wrong = 0, 0
with torch.no_grad():
for step, batch in enumerate(self.valid_data):
start = time.time()
total_examples += batch['batch_tgt'].size(0)
batch_loss, batch_predictions, \
batch_label_ids, batch_lengths = self.step(
batch, training=False)
valid_time += time.time() - start
batch_token_lens = batch['lengths']
batch_label_ids = batch['batch_tgt'].cpu().detach().numpy()
_num_correct, _num_wrong = get_metric_for_tfm(batch_predictions, batch_label_ids, batch_token_lens)
num_correct += _num_correct
num_wrong += _num_wrong
valid_loss += batch_loss
total_loss += batch_loss
if step % self.print_every == 0:
info = '{} Validation - iter: {:08d}/{:08d} - valid loss: {:.5f} - {} time: {:.2f}s'.format(
colored(str(dt.now()),"green"),
step,
len(self.valid_data),
valid_loss / self.print_every,
self.device,
valid_time / self.print_every)
valid_loss = 0
total_time += valid_time
valid_time = 0
self.logger.log(info)
del batch_loss
avg_loss = total_loss / len(self.valid_data)
avg_accu = num_correct / (num_correct + num_wrong)
avg_time = total_time / total_examples
return avg_loss, avg_accu, avg_time
def load_checkpoint(self, checkpoint_dir, dataset_name, start_epoch=0):
self.checkpoint_dir = checkpoint_dir
self.dataset_name = dataset_name
checkpoint_path = checkpoint_dir + \
f'/{dataset_name}.model.epoch_{start_epoch - 1}.pth'
if start_epoch > 0 and os.path.exists(checkpoint_path):
checkpoint = torch.load(
checkpoint_path, map_location=torch.device('cpu'))
assert EPOCHS == checkpoint['num_epochs']
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.scheduler.load_state_dict(checkpoint['scheduler'])
self.optimizer.base_lrs = [MAX_LR]
self.scheduler.base_lrs = [MAX_LR]
self.model.load_state_dict(checkpoint['state_dict'])
self.iter = checkpoint['iter']
self.remained_indies = checkpoint['remained_indies']
self.start_epoch = checkpoint['epoch']
self.progress_epoch = self.start_epoch
self.scratch_iter = checkpoint['scratch_iter']
train_dataset = load_epoch_dataset(self.data_path, self.correct_file,\
self.incorrect_file, self.length_file, self.start_epoch, EPOCHS)
self.train_dataset = SpellCorrectDataset(dataset=train_dataset)
if not BUCKET_SAMPLING:
assert checkpoint['strategy'] == "random_sampling"
self.train_sampler = RandomBatchSampler(self.train_dataset, TRAIN_BATCH_SIZE)
self.train_sampler.load_checkpoints(self.scratch_iter)
else:
assert checkpoint['strategy'] == "bucket_sampling"
self.train_sampler = BucketBatchSampler(self.train_dataset)
self.train_sampler.load_checkpoints(self.remained_indies)
self.train_data = DataLoader(dataset=self.train_dataset, batch_sampler=self.train_sampler,
collate_fn=self.model_wrapper.collator.collate,\
num_workers=2, pin_memory=True)
self.best_F1 = checkpoint['best_F1']
def save_checkpoint(self, checkpoint_dir, epoch, best_F1):
checkpoint_path = checkpoint_dir + \
f'/{self.dataset_name}.model.epoch_{epoch}.pth'
flatten_iterator_indies = list(chain.from_iterable(self.train_sampler.seq))
remained_indies = flatten_iterator_indies[self.scratch_iter:None]
self.logger.log(f"Traversed iter from beginning: {self.scratch_iter}")
state = {
'epoch': epoch,
'iter': self.iter, 'state_dict': self.model.state_dict(), 'scratch_iter': self.scratch_iter,
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'best_F1': best_F1,
'remained_indies': remained_indies,
'strategy': 'bucket_sampling' if BUCKET_SAMPLING else 'random_sampling',
'num_epochs': EPOCHS
}
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir, exist_ok=True)
info = f'Saving model checkpoint to: {checkpoint_path}'
self.logger.log(info)
torch.save(state, checkpoint_path)
def save_weights(self, checkpoint_dir, epoch, best_F1):
weight_path = checkpoint_dir + \
f'/{self.dataset_name}.weights.pth'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir, exist_ok=True)
state = {
'epoch': epoch,
'state_dict': self.model.state_dict(),
'best_F1': best_F1
}
info = f'Saving model weights to: {weight_path}'
self.logger.log(info)
torch.save(state, weight_path)