Spaces:
Building
Building
hoshingakag
commited on
Commit
·
9afac3f
1
Parent(s):
cbcda9a
add tracking
Browse files- app.py +87 -11
- akag-g-only.png → asset/akag-g-only.png +0 -0
- send-message.png → asset/send-message.png +0 -0
app.py
CHANGED
@@ -1,9 +1,15 @@
|
|
1 |
import os
|
2 |
import time
|
|
|
|
|
3 |
import gradio as gr
|
|
|
4 |
import google.generativeai as genai
|
5 |
from src.llamaindex_palm import LlamaIndexPaLM
|
6 |
|
|
|
|
|
|
|
7 |
import logging
|
8 |
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
9 |
logger = logging.getLogger('llm')
|
@@ -15,6 +21,9 @@ llm.set_index_from_pinecone()
|
|
15 |
# Credentials
|
16 |
genai.configure(api_key=os.getenv('PALM_API_KEY'))
|
17 |
|
|
|
|
|
|
|
18 |
# Gradio
|
19 |
chat_history = []
|
20 |
|
@@ -23,31 +32,71 @@ def clear_chat() -> None:
|
|
23 |
chat_history = []
|
24 |
return None
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def generate_chat(prompt: str, llamaindex_llm: LlamaIndexPaLM):
|
27 |
global chat_history
|
28 |
# get chat history
|
29 |
-
context_chat_history = "\n".join(chat_history)
|
30 |
|
31 |
logger.info("Generating Message...")
|
32 |
logger.info(f"User Message:\n{prompt}\n")
|
33 |
chat_history.append(prompt)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# get context
|
36 |
context_from_index = llamaindex_llm.generate_response(prompt)
|
37 |
logger.info(f"Context from Llama-Index:\n{context_from_index}\n")
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
prompt_with_context = f"""
|
40 |
-
|
41 |
You are in a role play of Gerard Lee and you need to pretend to be him to answer questions from people who interested in Gerard's background.
|
42 |
-
Respond in
|
43 |
-
|
44 |
-
History
|
45 |
{context_chat_history}
|
46 |
-
|
47 |
-
Context
|
48 |
{context_from_index}
|
49 |
-
|
50 |
-
User Query
|
51 |
{prompt}
|
52 |
"""
|
53 |
|
@@ -62,13 +111,40 @@ def generate_chat(prompt: str, llamaindex_llm: LlamaIndexPaLM):
|
|
62 |
]
|
63 |
)
|
64 |
result = response.result
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
except Exception as e:
|
67 |
result = "Seems something went wrong. Please try again later."
|
68 |
logger.error(f"Exception {e} occured\n")
|
|
|
69 |
|
70 |
chat_history.append(result)
|
71 |
logger.info(f"Bot Message:\n{result}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return result
|
73 |
|
74 |
with gr.Blocks() as app:
|
@@ -76,7 +152,7 @@ with gr.Blocks() as app:
|
|
76 |
bubble_full_width=False,
|
77 |
container=False,
|
78 |
show_share_button=False,
|
79 |
-
avatar_images=[None, './akag-g-only.png']
|
80 |
)
|
81 |
with gr.Row():
|
82 |
msg = gr.Textbox(
|
@@ -90,7 +166,7 @@ with gr.Blocks() as app:
|
|
90 |
send = gr.Button(
|
91 |
value="",
|
92 |
variant="primary",
|
93 |
-
icon="./send-message.png",
|
94 |
scale=1
|
95 |
)
|
96 |
|
|
|
1 |
import os
|
2 |
import time
|
3 |
+
import datetime
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
|
7 |
import google.generativeai as genai
|
8 |
from src.llamaindex_palm import LlamaIndexPaLM
|
9 |
|
10 |
+
import wandb
|
11 |
+
from wandb.sdk.data_types.trace_tree import Trace
|
12 |
+
|
13 |
import logging
|
14 |
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
15 |
logger = logging.getLogger('llm')
|
|
|
21 |
# Credentials
|
22 |
genai.configure(api_key=os.getenv('PALM_API_KEY'))
|
23 |
|
24 |
+
# W&B
|
25 |
+
wandb.init(project="ChatExp")
|
26 |
+
|
27 |
# Gradio
|
28 |
chat_history = []
|
29 |
|
|
|
32 |
chat_history = []
|
33 |
return None
|
34 |
|
35 |
+
def get_chat_history(chat_history) -> str:
|
36 |
+
ind = 0
|
37 |
+
formatted_chat_history = ""
|
38 |
+
for message in chat_history:
|
39 |
+
formatted_chat_history += f"User: \n{message}\n" if ind % 2 == 0 else f"Bot: \n{message}\n"
|
40 |
+
ind += 1
|
41 |
+
return formatted_chat_history
|
42 |
+
|
43 |
def generate_chat(prompt: str, llamaindex_llm: LlamaIndexPaLM):
|
44 |
global chat_history
|
45 |
# get chat history
|
46 |
+
context_chat_history = "\n".join(list(filter(None, chat_history)))
|
47 |
|
48 |
logger.info("Generating Message...")
|
49 |
logger.info(f"User Message:\n{prompt}\n")
|
50 |
chat_history.append(prompt)
|
51 |
|
52 |
+
# w&b trace start
|
53 |
+
start_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
54 |
+
|
55 |
+
root_span = Trace(
|
56 |
+
name="LLMChain",
|
57 |
+
kind="chain",
|
58 |
+
start_time_ms=start_time_ms,
|
59 |
+
metadata={"user": "Gradio"},
|
60 |
+
)
|
61 |
+
|
62 |
# get context
|
63 |
context_from_index = llamaindex_llm.generate_response(prompt)
|
64 |
logger.info(f"Context from Llama-Index:\n{context_from_index}\n")
|
65 |
|
66 |
+
# w&b trace agent
|
67 |
+
agent_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
68 |
+
agent_span = Trace(
|
69 |
+
name="Agent",
|
70 |
+
kind="agent",
|
71 |
+
status_code="success",
|
72 |
+
metadata={
|
73 |
+
"framework": "Llama-Index",
|
74 |
+
"index_type": "VectorStoreIndex",
|
75 |
+
"vector_store": "Pinecone",
|
76 |
+
"model_name": "models/text-bison-001",
|
77 |
+
"temperture": 0.7,
|
78 |
+
"top_k": 40,
|
79 |
+
"top_p": 0.95,
|
80 |
+
},
|
81 |
+
start_time_ms=start_time_ms,
|
82 |
+
end_time_ms=agent_end_time_ms,
|
83 |
+
inputs={"query": prompt},
|
84 |
+
outputs={"response": context_from_index},
|
85 |
+
)
|
86 |
+
root_span.add_child(agent_span)
|
87 |
+
|
88 |
prompt_with_context = f"""
|
89 |
+
[System]
|
90 |
You are in a role play of Gerard Lee and you need to pretend to be him to answer questions from people who interested in Gerard's background.
|
91 |
+
Respond the User Query below in no more than 5 complete sentences, unless specifically asked by the user to elaborate on something. Use only the History and Context to inform your answers.
|
92 |
+
|
93 |
+
[History]
|
94 |
{context_chat_history}
|
95 |
+
|
96 |
+
[Context]
|
97 |
{context_from_index}
|
98 |
+
|
99 |
+
[User Query]
|
100 |
{prompt}
|
101 |
"""
|
102 |
|
|
|
111 |
]
|
112 |
)
|
113 |
result = response.result
|
114 |
+
success_flag = "success"
|
115 |
+
if result is None:
|
116 |
+
result = "Seems something went wrong. Please try again later."
|
117 |
+
logger.error(f"Result with 'None' received\n")
|
118 |
+
success_flag = "fail"
|
119 |
|
120 |
except Exception as e:
|
121 |
result = "Seems something went wrong. Please try again later."
|
122 |
logger.error(f"Exception {e} occured\n")
|
123 |
+
success_flag = "fail"
|
124 |
|
125 |
chat_history.append(result)
|
126 |
logger.info(f"Bot Message:\n{result}\n")
|
127 |
+
|
128 |
+
# w&b trace llm
|
129 |
+
llm_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
130 |
+
llm_span = Trace(
|
131 |
+
name="LLM",
|
132 |
+
kind="llm",
|
133 |
+
status_code=success_flag,
|
134 |
+
start_time_ms=agent_end_time_ms,
|
135 |
+
end_time_ms=llm_end_time_ms,
|
136 |
+
inputs={"input": prompt_with_context},
|
137 |
+
outputs={"result": result},
|
138 |
+
)
|
139 |
+
root_span.add_child(llm_span)
|
140 |
+
|
141 |
+
# w&b finalize trace
|
142 |
+
root_span.add_inputs_and_outputs(
|
143 |
+
inputs={"query": prompt}, outputs={"result": result}
|
144 |
+
)
|
145 |
+
root_span._span.end_time_ms = llm_end_time_ms
|
146 |
+
root_span.log(name="llm_app_trace")
|
147 |
+
|
148 |
return result
|
149 |
|
150 |
with gr.Blocks() as app:
|
|
|
152 |
bubble_full_width=False,
|
153 |
container=False,
|
154 |
show_share_button=False,
|
155 |
+
avatar_images=[None, './asset/akag-g-only.png']
|
156 |
)
|
157 |
with gr.Row():
|
158 |
msg = gr.Textbox(
|
|
|
166 |
send = gr.Button(
|
167 |
value="",
|
168 |
variant="primary",
|
169 |
+
icon="./asset/send-message.png",
|
170 |
scale=1
|
171 |
)
|
172 |
|
akag-g-only.png → asset/akag-g-only.png
RENAMED
File without changes
|
send-message.png → asset/send-message.png
RENAMED
File without changes
|