Spaces:
Runtime error
Runtime error
File size: 29,367 Bytes
480bfbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
import warnings
import os
import torch
from torch import multiprocessing as mp
import stylegan2
from stylegan2 import utils
from stylegan2.external_models import inception, lpips
from stylegan2.metrics import fid, ppl
#----------------------------------------------------------------------------
def get_arg_parser():
parser = utils.ConfigArgumentParser()
parser.add_argument(
'--output',
help='Output directory for model weights.',
type=str,
default=None,
metavar='DIR'
)
#----------------------------------------------------------------------------
# Model options
parser.add_argument(
'--channels',
help='Specify the channels for each layer (can be overriden for individual ' + \
'networks with "--g_channels" and "--d_channels". ' + \
'Default: %(default)s',
nargs='*',
type=int,
default=[32, 32, 64, 128, 256, 512, 512, 512, 512],
metavar='CHANNELS'
)
parser.add_argument(
'--latent',
help='Size of the prior (noise vector). Default: %(default)s',
type=int,
default=512,
metavar='VALUE'
)
parser.add_argument(
'--label',
help='Number of unique labels. Unused if not specified.',
type=int,
default=0,
metavar='VALUE'
)
parser.add_argument(
'--base_shape',
help='Data shape of first layer in generator or ' + \
'last layer in discriminator. Default: %(default)s',
nargs=2,
type=int,
default=(4, 4),
metavar='SIZE'
)
parser.add_argument(
'--kernel_size',
help='Size of conv kernel. Default: %(default)s',
type=int,
default=3,
metavar='SIZE'
)
parser.add_argument(
'--pad_once',
help='Pad filtered convs only once before filter instead ' + \
'of twice. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--pad_mode',
help='Padding mode for conv layers. Default: %(default)s',
type=str,
default='constant',
metavar='MODE'
)
parser.add_argument(
'--pad_constant',
help='Padding constant for conv layers when `pad_mode` is ' + \
'\'constant\'. Default: %(default)s',
type=float,
default=0,
metavar='VALUE'
)
parser.add_argument(
'--filter_pad_mode',
help='Padding mode for filter layers. Default: %(default)s',
type=str,
default='constant',
metavar='MODE'
)
parser.add_argument(
'--filter_pad_constant',
help='Padding constant for filter layers when `filter_pad_mode` ' + \
'is \'constant\'. Default: %(default)s',
type=float,
default=0,
metavar='VALUE'
)
parser.add_argument(
'--filter',
help='Filter to use whenever FIR is applied. Default: %(default)s',
nargs='*',
type=float,
default=[1, 3, 3, 1],
metavar='VALUE'
)
parser.add_argument(
'--weight_scale',
help='Use weight scaling for equalized learning rate. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
#----------------------------------------------------------------------------
# Generator options
parser.add_argument(
'--g_file',
help='Load a generator model from a file instead of constructing a new one. Disabled unless a file is specified.',
type=str,
default=None,
metavar='FILE'
)
parser.add_argument(
'--g_channels',
help='Instead of the values of "--channels", ' + \
'use these for the generator instead.',
nargs='*',
type=int,
default=[],
metavar='CHANNELS'
)
parser.add_argument(
'--g_skip',
help='Use skip connections for the generator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--g_resnet',
help='Use resnet connections for the generator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
parser.add_argument(
'--g_conv_block_size',
help='Number of layers in a conv block in the generator. Default: %(default)s',
type=int,
default=2,
metavar='VALUE'
)
parser.add_argument(
'--g_normalize',
help='Normalize conv features for generator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--g_fused_conv',
help='Fuse conv & upsample into a transposed ' + \
'conv for the generator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--g_activation',
help='The non-linear activaiton function for ' + \
'the generator. Default: %(default)s',
default='leaky:0.2',
type=str,
metavar='ACTIVATION'
)
parser.add_argument(
'--g_conv_resample_mode',
help='Resample mode for upsampling conv ' + \
'layers for generator. Default: %(default)s',
type=str,
default='FIR',
metavar='MODE'
)
parser.add_argument(
'--g_skip_resample_mode',
help='Resample mode for skip connection ' + \
'upsamples for the generator. Default: %(default)s',
type=str,
default='FIR',
metavar='MODE'
)
parser.add_argument(
'--g_lr',
help='The learning rate for the generator. Default: %(default)s',
default=2e-3,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--g_betas',
help='Beta values for the generator Adam optimizer. Default: %(default)s',
type=float,
nargs=2,
default=(0, 0.99),
metavar='VALUE'
)
parser.add_argument(
'--g_loss',
help='Loss function for the generator. Default: %(default)s',
default='logistic_ns',
type=str,
metavar='LOSS'
)
parser.add_argument(
'--g_reg',
help='Regularization function for the generator with an optional weight (:?). Default: %(default)s',
default='pathreg:2',
type=str,
metavar='REG'
)
parser.add_argument(
'--g_reg_interval',
help='Interval at which to regularize the generator. Default: %(default)s',
default=4,
type=int,
metavar='INTERVAL'
)
parser.add_argument(
'--g_iter',
help='Number of generator iterations per training iteration. Default: %(default)s',
default=1,
type=int,
metavar='ITER'
)
parser.add_argument(
'--style_mix',
help='The probability of passing more than one ' + \
'latent to the generator. Default: %(default)s',
type=float,
default=0.9,
metavar='PROBABILITY'
)
parser.add_argument(
'--latent_mapping_layers',
help='The number of layers of the latent mapping network. Default: %(default)s',
type=int,
default=8,
metavar='LAYERS'
)
parser.add_argument(
'--latent_mapping_lr_mul',
help='The learning rate multiplier for the latent ' + \
'mapping network. Default: %(default)s',
type=float,
default=0.01,
metavar='LR_MUL'
)
parser.add_argument(
'--normalize_latent',
help='Normalize latent inputs. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--modulate_rgb',
help='Modulate RGB layers (use style for output ' + \
'layers of generator). Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
#----------------------------------------------------------------------------
# Discriminator options
parser.add_argument(
'--d_file',
help='Load a discriminator model from a file instead of constructing a new one. Disabled unless a file is specified.',
type=str,
default=None,
metavar='FILE'
)
parser.add_argument(
'--d_channels',
help='Instead of the values of "--channels", ' + \
'use these for the discriminator instead.',
nargs='*',
type=int,
default=[],
metavar='CHANNELS'
)
parser.add_argument(
'--d_skip',
help='Use skip connections for the discriminator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
parser.add_argument(
'--d_resnet',
help='Use resnet connections for the discriminator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--d_conv_block_size',
help='Number of layers in a conv block in the discriminator. Default: %(default)s',
type=int,
default=2,
metavar='VALUE'
)
parser.add_argument(
'--d_fused_conv',
help='Fuse conv & downsample into a strided ' + \
'conv for the discriminator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--group_size',
help='Size of the groups in batch std layer. Default: %(default)s',
type=int,
default=4,
metavar='VALUE'
)
parser.add_argument(
'--d_activation',
help='The non-linear activaiton function for the discriminator. Default: %(default)s',
default='leaky:0.2',
type=str,
metavar='ACTIVATION'
)
parser.add_argument(
'--d_conv_resample_mode',
help='Resample mode for downsampling conv ' + \
'layers for discriminator. Default: %(default)s',
type=str,
default='FIR',
metavar='MODE'
)
parser.add_argument(
'--d_skip_resample_mode',
help='Resample mode for skip connection ' + \
'downsamples for the discriminator. Default: %(default)s',
type=str,
default='FIR',
metavar='MODE'
)
parser.add_argument(
'--d_loss',
help='Loss function for the disriminator. Default: %(default)s',
default='logistic',
type=str,
metavar='LOSS'
)
parser.add_argument(
'--d_reg',
help='Regularization function for the discriminator ' + \
'with an optional weight (:?). Default: %(default)s',
default='r1:10',
type=str,
metavar='REG'
)
parser.add_argument(
'--d_reg_interval',
help='Interval at which to regularize the discriminator. Default: %(default)s',
default=16,
type=int,
metavar='INTERVAL'
)
parser.add_argument(
'--d_iter',
help='Number of discriminator iterations per training iteration. Default: %(default)s',
default=1,
type=int,
metavar='ITER'
)
parser.add_argument(
'--d_lr',
help='The learning rate for the discriminator. Default: %(default)s',
default=2e-3,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--d_betas',
help='Beta values for the discriminator Adam optimizer. Default: %(default)s',
type=float,
nargs=2,
default=(0, 0.99),
metavar='VALUE'
)
#----------------------------------------------------------------------------
# Training options
parser.add_argument(
'--iterations',
help='Number of iterations to train for. Default: %(default)s',
type=int,
default=1000000,
metavar='ITERATIONS'
)
parser.add_argument(
'--gpu',
help='The cuda device(s) to use. Example: ""--gpu 0 1" will train ' + \
'on GPU 0 and GPU 1. Default: Only use CPU',
type=int,
default=[],
nargs='*',
metavar='DEVICE_ID'
)
parser.add_argument(
'--distributed',
help='When more than one gpu device is passed, automatically ' + \
'start one process for each device and give it the correct ' + \
'distributed args (rank, world_size etc). Disable this if ' + \
'you want training to be performed with only one process ' + \
'using the DataParallel module. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=True,
metavar='BOOL'
)
parser.add_argument(
'--rank',
help='Rank for distributed training.',
type=int,
default=None,
)
parser.add_argument(
'--world_size',
help='World size for distributed training.',
type=int,
default=None,
)
parser.add_argument(
'--master_addr',
help='Address for distributed training.',
type=str,
default=None,
)
parser.add_argument(
'--master_port',
help='Port for distributed training.',
type=str,
default=None,
)
parser.add_argument(
'--batch_size',
help='Size of each batch. Default: %(default)s',
default=32,
type=int,
metavar='VALUE'
)
parser.add_argument(
'--device_batch_size',
help='Maximum number of items to fit on single device at a time. Default: %(default)s',
default=4,
type=int,
metavar='VALUE'
)
parser.add_argument(
'--g_reg_batch_size',
help='Size of each batch used to regularize the generator. Default: %(default)s',
default=16,
type=int,
metavar='VALUE'
)
parser.add_argument(
'--g_reg_device_batch_size',
help='Maximum number of items to fit on single device when ' + \
'regularizing the generator. Default: %(default)s',
default=2,
type=int,
metavar='VALUE'
)
parser.add_argument(
'--half',
help='Use mixed precision training. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
parser.add_argument(
'--resume',
help='Resume from the latest saved checkpoint in the checkpoint_dir. ' + \
'This loads all previous training settings except for the dataset options, ' + \
'device args (--gpu ...) and distributed training args (--rank, --world_size e.t.c) ' + \
'as well as metrics and logging.',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
#----------------------------------------------------------------------------
# Extra metric options
parser.add_argument(
'--fid_interval',
help='If specified, evaluate the FID metric with this interval.',
default=None,
type=int,
metavar='INTERVAL'
)
parser.add_argument(
'--ppl_interval',
help='If specified, evaluate the PPL metric with this interval.',
default=None,
type=int,
metavar='INTERVAL'
)
parser.add_argument(
'--ppl_ffhq_crop',
help='Crop images evaluated for PPL with crop values for FFHQ. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
#----------------------------------------------------------------------------
# Data options
parser.add_argument(
'--pixel_min',
help='Minimum of the value range of pixels in generated images. Default: %(default)s',
default=-1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--pixel_max',
help='Maximum of the value range of pixels in generated images. Default: %(default)s',
default=1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--data_channels',
help='Number of channels in the data. Default: 3 (RGB)',
default=3,
type=int,
choices=[1, 3],
metavar='CHANNELS'
)
parser.add_argument(
'--data_dir',
help='The root directory of the dataset. This argument is required!',
type=str,
default=None
)
parser.add_argument(
'--data_resize',
help='Resize data to fit input size of discriminator. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
parser.add_argument(
'--mirror_augment',
help='Use random horizontal flipping for data images. Default: %(default)s',
type=utils.bool_type,
const=True,
nargs='?',
default=False,
metavar='BOOL'
)
parser.add_argument(
'--data_workers',
help='Number of worker processes that handles dataloading. Default: %(default)s',
default=4,
type=int,
metavar='WORKERS'
)
#----------------------------------------------------------------------------
# Logging options
parser.add_argument(
'--checkpoint_dir',
help='If specified, save checkpoints to this directory.',
default=None,
type=str,
metavar='DIR'
)
parser.add_argument(
'--checkpoint_interval',
help='Save checkpoints with this interval. Default: %(default)s',
default=10000,
type=int,
metavar='INTERVAL'
)
parser.add_argument(
'--tensorboard_log_dir',
help='Log to this tensorboard directory if specified.',
default=None,
type=str,
metavar='DIR'
)
parser.add_argument(
'--tensorboard_image_interval',
help='Log images to tensorboard with this interval if specified.',
default=None,
type=int,
metavar='INTERVAL'
)
parser.add_argument(
'--tensorboard_image_size',
help='Size of images logged to tensorboard. Default: %(default)s',
default=256,
type=int,
metavar='VALUE'
)
return parser
#----------------------------------------------------------------------------
def get_dataset(args):
assert args.data_dir, '--data_dir has to be specified.'
height, width = [
shape * 2 ** (len(args.d_channels or args.channels) - 1)
for shape in args.base_shape
]
dataset = utils.ImageFolder(
args.data_dir,
mirror=args.mirror_augment,
pixel_min=args.pixel_min,
pixel_max=args.pixel_max,
height=height,
width=width,
resize=args.data_resize,
grayscale=args.data_channels == 1
)
assert len(dataset), 'No images found at {}'.format(args.data_dir)
return dataset
#----------------------------------------------------------------------------
def get_models(args):
common_kwargs = dict(
data_channels=args.data_channels,
base_shape=args.base_shape,
conv_filter=args.filter,
skip_filter=args.filter,
kernel_size=args.kernel_size,
conv_pad_mode=args.pad_mode,
conv_pad_constant=args.pad_constant,
filter_pad_mode=args.filter_pad_mode,
filter_pad_constant=args.filter_pad_constant,
pad_once=args.pad_once,
weight_scale=args.weight_scale
)
if args.g_file:
G = stylegan2.models.load(args.g_file)
assert isinstance(G, stylegan2.models.Generator), \
'`--g_file` should specify a generator model, found {}'.format(type(G))
else:
G_M = stylegan2.models.GeneratorMapping(
latent_size=args.latent,
label_size=args.label,
num_layers=args.latent_mapping_layers,
hidden=args.latent,
activation=args.g_activation,
normalize_input=args.normalize_latent,
lr_mul=args.latent_mapping_lr_mul,
weight_scale=args.weight_scale
)
G_S = stylegan2.models.GeneratorSynthesis(
channels=args.g_channels or args.channels,
latent_size=args.latent,
demodulate=args.g_normalize,
modulate_data_out=args.modulate_rgb,
conv_block_size=args.g_conv_block_size,
activation=args.g_activation,
conv_resample_mode=args.g_conv_resample_mode,
skip_resample_mode=args.g_skip_resample_mode,
resnet=args.g_resnet,
skip=args.g_skip,
fused_resample=args.g_fused_conv,
**common_kwargs
)
G = stylegan2.models.Generator(G_mapping=G_M, G_synthesis=G_S)
if args.d_file:
D = stylegan2.models.load(args.d_file)
assert isinstance(D, stylegan2.models.Discriminator), \
'`--d_file` should specify a discriminator model, found {}'.format(type(D))
else:
D = stylegan2.models.Discriminator(
channels=args.d_channels or args.channels,
label_size=args.label,
conv_block_size=args.d_conv_block_size,
activation=args.d_activation,
conv_resample_mode=args.d_conv_resample_mode,
skip_resample_mode=args.d_skip_resample_mode,
mbstd_group_size=args.group_size,
resnet=args.d_resnet,
skip=args.d_skip,
fused_resample=args.d_fused_conv,
**common_kwargs
)
assert len(G.G_synthesis.channels) == len(D.channels), \
'While the number of channels for each layer can ' + \
'differ between generator and discriminator, the ' + \
'number of layers have to be the same. Received ' + \
'{} generator layers and {} discriminator layers.'.format(
len(G.G_synthesis.channels), len(D.channels))
return G, D
#----------------------------------------------------------------------------
def get_trainer(args):
dataset = get_dataset(args)
if args.resume and stylegan2.train._find_checkpoint(args.checkpoint_dir):
trainer = stylegan2.train.Trainer.load_checkpoint(
args.checkpoint_dir,
dataset,
device=args.gpu,
rank=args.rank,
world_size=args.world_size,
master_addr=args.master_addr,
master_port=args.master_port,
tensorboard_log_dir=args.tensorboard_log_dir
)
else:
G, D = get_models(args)
trainer = stylegan2.train.Trainer(
G=G,
D=D,
latent_size=args.latent,
dataset=dataset,
device=args.gpu,
batch_size=args.batch_size,
device_batch_size=args.device_batch_size,
label_size=args.label,
data_workers=args.data_workers,
G_loss=args.g_loss,
D_loss=args.d_loss,
G_reg=args.g_reg,
G_reg_interval=args.g_reg_interval,
G_opt_kwargs={'lr': args.g_lr, 'betas': args.g_betas},
G_reg_batch_size=args.g_reg_batch_size,
G_reg_device_batch_size=args.g_reg_device_batch_size,
D_reg=args.d_reg,
D_reg_interval=args.d_reg_interval,
D_opt_kwargs={'lr': args.d_lr, 'betas': args.d_betas},
style_mix_prob=args.style_mix,
G_iter=args.g_iter,
D_iter=args.d_iter,
tensorboard_log_dir=args.tensorboard_log_dir,
checkpoint_dir=args.checkpoint_dir,
checkpoint_interval=args.checkpoint_interval,
half=args.half,
rank=args.rank,
world_size=args.world_size,
master_addr=args.master_addr,
master_port=args.master_port
)
if args.fid_interval and not args.rank:
fid_model = inception.InceptionV3FeatureExtractor(
pixel_min=args.pixel_min, pixel_max=args.pixel_max)
trainer.register_metric(
name='FID (299x299)',
eval_fn=fid.FID(
trainer.Gs,
trainer.prior_generator,
dataset=dataset,
fid_model=fid_model,
fid_size=299,
reals_batch_size=64
),
interval=args.fid_interval
)
trainer.register_metric(
name='FID',
eval_fn=fid.FID(
trainer.Gs,
trainer.prior_generator,
dataset=dataset,
fid_model=fid_model,
fid_size=None
),
interval=args.fid_interval
)
if args.ppl_interval and not args.rank:
lpips_model = lpips.LPIPS_VGG16(
pixel_min=args.pixel_min, pixel_max=args.pixel_max)
crop = None
if args.ppl_ffhq_crop:
crop = ppl.PPL.FFHQ_CROP
trainer.register_metric(
name='PPL_end',
eval_fn=ppl.PPL(
trainer.Gs,
trainer.prior_generator,
full_sampling=False,
crop=crop,
lpips_model=lpips_model,
lpips_size=256
),
interval=args.ppl_interval
)
trainer.register_metric(
name='PPL_full',
eval_fn=ppl.PPL(
trainer.Gs,
trainer.prior_generator,
full_sampling=True,
crop=crop,
lpips_model=lpips_model,
lpips_size=256
),
interval=args.ppl_interval
)
if args.tensorboard_image_interval:
for static in [True, False]:
for trunc in [0.5, 0.7, 1.0]:
if static:
name = 'static'
else:
name = 'random'
name += '/trunc_{:.1f}'.format(trunc)
trainer.add_tensorboard_image_logging(
name=name,
num_images=4,
interval=args.tensorboard_image_interval,
resize=args.tensorboard_image_size,
seed=1234567890 if static else None,
truncation_psi=trunc,
pixel_min=args.pixel_min,
pixel_max=args.pixel_max
)
return trainer
#----------------------------------------------------------------------------
def run(args):
if not args.rank:
if not (args.checkpoint_dir or args.output):
warnings.warn(
'Neither an output path or checkpoint dir has been ' + \
'given. Weights from this training run will never ' + \
'be saved.'
)
if args.output:
assert os.path.isdir(args.output) or not os.path.splitext(args.output)[-1], \
'--output argument should specify a directory, not a file.'
trainer = get_trainer(args)
trainer.train(iterations=args.iterations)
if not args.rank and args.output:
print('Saving models to {}'.format(args.output))
if not os.path.exists(args.output):
os.makedirs(args.output)
for model_name in ['G', 'D', 'Gs']:
getattr(trainer, model_name).save(
os.path.join(args.output_dir, model_name + '.pth'))
#----------------------------------------------------------------------------
def run_distributed(rank, args):
args.rank = rank
args.world_size = len(args.gpu)
args.gpu = args.gpu[rank]
args.master_addr = args.master_addr or '127.0.0.1'
args.master_port = args.master_port or '23456'
run(args)
#----------------------------------------------------------------------------
def main():
parser = get_arg_parser()
args = parser.parse_args()
if len(args.gpu) > 1 and args.distributed:
assert args.rank is None and args.world_size is None, \
'When --distributed is enabled (default) the rank and ' + \
'world size can not be given as this is set up automatically. ' + \
'Use --distributed 0 to disable automatic setup of distributed training.'
mp.spawn(run_distributed, nprocs=len(args.gpu), args=(args,))
else:
run(args)
#----------------------------------------------------------------------------
if __name__ == '__main__':
main()
|