Spaces:
Runtime error
Runtime error
File size: 12,852 Bytes
480bfbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import os
import argparse
import numpy as np
import torch
import stylegan2
from stylegan2 import utils
#----------------------------------------------------------------------------
_description = """StyleGAN2 projector.
Run 'python %(prog)s <subcommand> --help' for subcommand help."""
#----------------------------------------------------------------------------
_examples = """examples:
# Train a network or convert a pretrained one.
# Example of converting pretrained ffhq model:
python run_convert_from_tf --download ffhq-config-f --output G.pth D.pth Gs.pth
# Project generated images
python %(prog)s project_generated_images --network=Gs.pth --seeds=0,1,5
# Project real images
python %(prog)s project_real_images --network=Gs.pth --data-dir=path/to/image_folder
"""
#----------------------------------------------------------------------------
def _add_shared_arguments(parser):
parser.add_argument(
'--network',
help='Network file path',
required=True,
metavar='FILE'
)
parser.add_argument(
'--num_steps',
type=int,
help='Number of steps to use for projection. ' + \
'Default: %(default)s',
default=1000,
metavar='VALUE'
)
parser.add_argument(
'--batch_size',
help='Batch size. Default: %(default)s',
type=int,
default=1,
metavar='VALUE'
)
parser.add_argument(
'--label',
help='Label to use for dlatent statistics gathering ' + \
'(should be integer index of class). Default: no label.',
type=int,
default=None,
metavar='CLASS_INDEX'
)
parser.add_argument(
'--initial_learning_rate',
help='Initial learning rate of projection. Default: %(default)s',
default=0.1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--initial_noise_factor',
help='Initial noise factor of projection. Default: %(default)s',
default=0.05,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--lr_rampdown_length',
help='Learning rate rampdown length for projection. ' + \
'Should be in range [0, 1]. Default: %(default)s',
default=0.25,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--lr_rampup_length',
help='Learning rate rampup length for projection. ' + \
'Should be in range [0, 1]. Default: %(default)s',
default=0.05,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--noise_ramp_length',
help='Learning rate rampdown length for projection. ' + \
'Should be in range [0, 1]. Default: %(default)s',
default=0.75,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--regularize_noise_weight',
help='The weight for noise regularization. Default: %(default)s',
default=1e5,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--output',
help='Root directory for run results. Default: %(default)s',
type=str,
default='./results',
metavar='DIR'
)
parser.add_argument(
'--num_snapshots',
help='Number of snapshots. Default: %(default)s',
type=int,
default=5,
metavar='VALUE'
)
parser.add_argument(
'--pixel_min',
help='Minumum of the value range of pixels in generated images. ' + \
'Default: %(default)s',
default=-1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--pixel_max',
help='Maximum of the value range of pixels in generated images. ' + \
'Default: %(default)s',
default=1,
type=float,
metavar='VALUE'
)
parser.add_argument(
'--gpu',
help='CUDA device indices (given as separate ' + \
'values if multiple, i.e. "--gpu 0 1"). Default: Use CPU',
type=int,
default=[],
nargs='*',
metavar='INDEX'
)
#----------------------------------------------------------------------------
def get_arg_parser():
parser = argparse.ArgumentParser(
description=_description,
epilog=_examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
range_desc = 'NOTE: This is a single argument, where list ' + \
'elements are separated by "," and ranges are defined as "a-b". ' + \
'Only integers are allowed.'
subparsers = parser.add_subparsers(help='Sub-commands', dest='command')
project_generated_images_parser = subparsers.add_parser(
'project_generated_images', help='Project generated images')
project_generated_images_parser.add_argument(
'--seeds',
help='List of random seeds for generating images. ' + \
'Default: 66,230,389,1518. ' + range_desc,
type=utils.range_type,
default=[66, 230, 389, 1518],
metavar='RANGE'
)
project_generated_images_parser.add_argument(
'--truncation_psi',
help='Truncation psi. Default: %(default)s',
type=float,
default=1.0,
metavar='VALUE'
)
_add_shared_arguments(project_generated_images_parser)
project_real_images_parser = subparsers.add_parser(
'project_real_images', help='Project real images')
project_real_images_parser.add_argument(
'--data_dir',
help='Dataset root directory',
type=str,
required=True,
metavar='DIR'
)
project_real_images_parser.add_argument(
'--seed',
help='When there are more images available than ' + \
'the number that is going to be projected this ' + \
'seed is used for picking samples. Default: %(default)s',
type=int,
default=1234,
metavar='VALUE'
)
project_real_images_parser.add_argument(
'--num_images',
type=int,
help='Number of images to project. Default: %(default)s',
default=3,
metavar='VALUE'
)
_add_shared_arguments(project_real_images_parser)
return parser
#----------------------------------------------------------------------------
def project_images(G, images, name_prefix, args):
device = torch.device(args.gpu[0] if args.gpu else 'cpu')
if device.index is not None:
torch.cuda.set_device(device.index)
if len(args.gpu) > 1:
warnings.warn(
'Multi GPU is not available for projection. ' + \
'Using device {}'.format(device)
)
G = utils.unwrap_module(G).to(device)
lpips_model = stylegan2.external_models.lpips.LPIPS_VGG16(
pixel_min=args.pixel_min, pixel_max=args.pixel_max)
proj = stylegan2.project.Projector(
G=G,
dlatent_avg_samples=10000,
dlatent_avg_label=args.label,
dlatent_device=device,
dlatent_batch_size=1024,
lpips_model=lpips_model,
lpips_size=256
)
for i in range(0, len(images), args.batch_size):
target = images[i: i + args.batch_size]
proj.start(
target=target,
num_steps=args.num_steps,
initial_learning_rate=args.initial_learning_rate,
initial_noise_factor=args.initial_noise_factor,
lr_rampdown_length=args.lr_rampdown_length,
lr_rampup_length=args.lr_rampup_length,
noise_ramp_length=args.noise_ramp_length,
regularize_noise_weight=args.regularize_noise_weight,
verbose=True,
verbose_prefix='Projecting image(s) {}/{}'.format(
i * args.batch_size + len(target), len(images))
)
snapshot_steps = set(
args.num_steps - np.linspace(
0, args.num_steps, args.num_snapshots, endpoint=False, dtype=int))
for k, image in enumerate(
utils.tensor_to_PIL(target, pixel_min=args.pixel_min, pixel_max=args.pixel_max)):
image.save(os.path.join(args.output, name_prefix[i + k] + 'target.png'))
for j in range(args.num_steps):
proj.step()
if j in snapshot_steps:
generated = utils.tensor_to_PIL(
proj.generate(), pixel_min=args.pixel_min, pixel_max=args.pixel_max)
for k, image in enumerate(generated):
image.save(os.path.join(
args.output, name_prefix[i + k] + 'step%04d.png' % (j + 1)))
#----------------------------------------------------------------------------
def project_generated_images(G, args):
latent_size, label_size = G.latent_size, G.label_size
device = torch.device(args.gpu[0] if args.gpu else 'cpu')
if device.index is not None:
torch.cuda.set_device(device.index)
G.to(device)
if len(args.gpu) > 1:
warnings.warn(
'Noise can not be randomized based on the seed ' + \
'when using more than 1 GPU device. Noise will ' + \
'now be randomized from default random state.'
)
G.random_noise()
G = torch.nn.DataParallel(G, device_ids=args.gpu)
else:
noise_reference = G.static_noise()
def get_batch(seeds):
latents = []
labels = []
if len(args.gpu) <= 1:
noise_tensors = [[] for _ in noise_reference]
for seed in seeds:
rnd = np.random.RandomState(seed)
latents.append(torch.from_numpy(rnd.randn(latent_size)))
if len(args.gpu) <= 1:
for i, ref in enumerate(noise_reference):
noise_tensors[i].append(
torch.from_numpy(rnd.randn(*ref.size()[1:])))
if label_size:
labels.append(torch.tensor([rnd.randint(0, label_size)]))
latents = torch.stack(latents, dim=0).to(device=device, dtype=torch.float32)
if labels:
labels = torch.cat(labels, dim=0).to(device=device, dtype=torch.int64)
else:
labels = None
if len(args.gpu) <= 1:
noise_tensors = [
torch.stack(noise, dim=0).to(device=device, dtype=torch.float32)
for noise in noise_tensors
]
else:
noise_tensors = None
return latents, labels, noise_tensors
images = []
progress = utils.ProgressWriter(len(args.seeds))
progress.write('Generating images...', step=False)
for i in range(0, len(args.seeds), args.batch_size):
latents, labels, noise_tensors = get_batch(args.seeds[i: i + args.batch_size])
if noise_tensors is not None:
G.static_noise(noise_tensors=noise_tensors)
with torch.no_grad():
images.append(G(latents, labels=labels))
progress.step()
images = torch.cat(images, dim=0)
progress.write('Done!', step=False)
progress.close()
name_prefix = ['seed%04d-' % seed for seed in args.seeds]
project_images(G, images, name_prefix, args)
#----------------------------------------------------------------------------
def project_real_images(G, args):
device = torch.device(args.gpu[0] if args.gpu else 'cpu')
print('Loading images from "%s"...' % args.data_dir)
dataset = utils.ImageFolder(
args.data_dir, pixel_min=args.pixel_min, pixel_max=args.pixel_max)
rnd = np.random.RandomState(args.seed)
indices = rnd.choice(
len(dataset), size=min(args.num_images, len(dataset)), replace=False)
images = []
for i in indices:
data = dataset[i]
if isinstance(data, (tuple, list)):
data = data[0]
images.append(data)
images = torch.stack(images).to(device)
name_prefix = ['image%04d-' % i for i in indices]
print('Done!')
project_images(G, images, name_prefix, args)
#----------------------------------------------------------------------------
def main():
args = get_arg_parser().parse_args()
assert args.command, 'Missing subcommand.'
assert os.path.isdir(args.output) or not os.path.splitext(args.output)[-1], \
'--output argument should specify a directory, not a file.'
if not os.path.exists(args.output):
os.makedirs(args.output)
G = stylegan2.models.load(args.network)
assert isinstance(G, stylegan2.models.Generator), 'Model type has to be ' + \
'stylegan2.models.Generator. Found {}.'.format(type(G))
if args.command == 'project_generated_images':
project_generated_images(G, args)
elif args.command == 'project_real_images':
project_real_images(G, args)
else:
raise TypeError('Unkown command {}'.format(args.command))
if __name__ == '__main__':
main()
|