File size: 3,409 Bytes
93b0d61
 
03b3c4e
6904e5b
416fc0c
e1e9b2f
03b3c4e
 
93b0d61
ee70940
93b0d61
 
03b3c4e
 
 
ee70940
03b3c4e
 
 
c082d19
93b0d61
ee70940
93b0d61
 
 
03b3c4e
 
5c31923
ee70940
5c31923
93b0d61
03b3c4e
 
 
 
f5ea5bf
5c31923
93b0d61
03b3c4e
93b0d61
 
 
 
0b9e28c
93b0d61
 
799c1d9
93b0d61
 
03b3c4e
93b0d61
 
 
 
 
 
 
 
 
 
 
 
d14eae4
93b0d61
 
 
 
 
 
 
 
 
 
 
ee70940
93b0d61
 
 
 
03b3c4e
 
ee70940
03b3c4e
93b0d61
 
 
03b3c4e
ee70940
03b3c4e
93b0d61
 
03b3c4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import torch
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline

model_id = "hsuwill000/Fluently-v4-LCM-openvino"

HIGH = 1024
WIDTH = 512

batch_size = None  # Or set it to a specific positive integer if needed

pipe = OVStableDiffusionPipeline.from_pretrained(
    model_id,
    compile=False,
    ov_config={"CACHE_DIR": ""},
    torch_dtype=torch.float16,  # More standard dtype for speed
    safety_checker=None,
    use_safetensors=False,
)
print(pipe.scheduler.compatibles)

pipe.reshape(batch_size=batch_size, height=HIGH, width=WIDTH, num_images_per_prompt=1)

pipe.compile()

prompt = ""
negative_prompt = "EasyNegative, "
num_inference_steps = 4

def infer(prompt, negative_prompt, num_inference_steps):
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=WIDTH,
        height=HIGH,
        guidance_scale=1.0,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=1,
    ).images[0]
    
    return image

examples = [
    "(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
    "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
    "masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
    "((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # {model_id.split('/')[1]} {WIDTH}x{HIGH}
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )         
            run_button = gr.Button("Run", scale=1)
        
        result = gr.Image(label="Result", show_label=False)

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, negative_prompt, num_inference_steps],
            outputs=[result]
        )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()