Spaces:
Runtime error
Runtime error
File size: 3,409 Bytes
93b0d61 03b3c4e 6904e5b 416fc0c e1e9b2f 03b3c4e 93b0d61 ee70940 93b0d61 03b3c4e ee70940 03b3c4e c082d19 93b0d61 ee70940 93b0d61 03b3c4e 5c31923 ee70940 5c31923 93b0d61 03b3c4e f5ea5bf 5c31923 93b0d61 03b3c4e 93b0d61 0b9e28c 93b0d61 799c1d9 93b0d61 03b3c4e 93b0d61 d14eae4 93b0d61 ee70940 93b0d61 03b3c4e ee70940 03b3c4e 93b0d61 03b3c4e ee70940 03b3c4e 93b0d61 03b3c4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
import torch
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
model_id = "hsuwill000/Fluently-v4-LCM-openvino"
HIGH = 1024
WIDTH = 512
batch_size = None # Or set it to a specific positive integer if needed
pipe = OVStableDiffusionPipeline.from_pretrained(
model_id,
compile=False,
ov_config={"CACHE_DIR": ""},
torch_dtype=torch.float16, # More standard dtype for speed
safety_checker=None,
use_safetensors=False,
)
print(pipe.scheduler.compatibles)
pipe.reshape(batch_size=batch_size, height=HIGH, width=WIDTH, num_images_per_prompt=1)
pipe.compile()
prompt = ""
negative_prompt = "EasyNegative, "
num_inference_steps = 4
def infer(prompt, negative_prompt, num_inference_steps):
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=WIDTH,
height=HIGH,
guidance_scale=1.0,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
).images[0]
return image
examples = [
"(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
"1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
"masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
"((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# {model_id.split('/')[1]} {WIDTH}x{HIGH}
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=1)
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, negative_prompt, num_inference_steps],
outputs=[result]
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, num_inference_steps],
outputs=[result]
)
demo.queue().launch()
|