mishig HF staff commited on
Commit
ccee973
·
verified ·
1 Parent(s): 3adabf3

use BAAI/bge-base-en-v1.5

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -5,8 +5,8 @@ import torch
5
  from transformers import AutoModel, AutoTokenizer
6
  import meilisearch
7
 
8
- tokenizer = AutoTokenizer.from_pretrained('Snowflake/snowflake-arctic-embed-m')
9
- model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-m', add_pooling_layer=False)
10
  model.eval()
11
 
12
  cuda_available = torch.cuda.is_available()
@@ -23,16 +23,17 @@ def search_embeddings(query_text):
23
  # step1: tokenizer the query
24
  with torch.no_grad():
25
  # Compute token embeddings
26
- query_embeddings = model(**query_tokens)[0][:, 0]
 
27
  # normalize embeddings
28
- query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
29
- document_embeddings_list = query_embeddings[0].tolist()
30
  elapsed_time_embedding = time.time() - start_time_embedding
31
 
32
  # step2: search meilisearch
33
  start_time_meilisearch = time.time()
34
  response = meilisearch_index.search(
35
- "", opt_params={"vector": document_embeddings_list, "hybrid": {"semanticRatio": 1.0}, "limit": 5, "attributesToRetrieve": ["text", "source", "library"]}
36
  )
37
  elapsed_time_meilisearch = time.time() - start_time_meilisearch
38
  hits = response["hits"]
 
5
  from transformers import AutoModel, AutoTokenizer
6
  import meilisearch
7
 
8
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-base-en-v1.5')
9
+ model = AutoModel.from_pretrained('BAAI/bge-base-en-v1.5')
10
  model.eval()
11
 
12
  cuda_available = torch.cuda.is_available()
 
23
  # step1: tokenizer the query
24
  with torch.no_grad():
25
  # Compute token embeddings
26
+ model_output = model(**query_tokens)
27
+ sentence_embeddings = model_output[0][:, 0]
28
  # normalize embeddings
29
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
30
+ sentence_embeddings_list = sentence_embeddings[0].tolist()
31
  elapsed_time_embedding = time.time() - start_time_embedding
32
 
33
  # step2: search meilisearch
34
  start_time_meilisearch = time.time()
35
  response = meilisearch_index.search(
36
+ "", opt_params={"vector": sentence_embeddings_list, "hybrid": {"semanticRatio": 1.0}, "limit": 5, "attributesToRetrieve": ["text", "source", "library"]}
37
  )
38
  elapsed_time_meilisearch = time.time() - start_time_meilisearch
39
  hits = response["hits"]