File size: 14,315 Bytes
52409f1
 
 
 
 
 
d348068
52409f1
 
 
 
 
 
8db36ff
2e463c2
 
 
 
bc6b1cc
 
ce6c967
 
 
 
2e463c2
 
 
 
 
bc6b1cc
2e463c2
52409f1
b1cd1c8
 
 
1ac71fe
b1cd1c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68759e
52409f1
 
 
 
 
 
 
2401abf
 
52409f1
 
 
 
 
d68759e
52409f1
d68759e
 
 
52409f1
 
 
 
d68759e
 
52409f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1846f7
d79d8bb
549f7f3
d79d8bb
549f7f3
d79d8bb
d68759e
d79d8bb
549f7f3
 
 
 
 
 
 
 
 
d79d8bb
d68759e
52409f1
 
 
b4ce27c
 
 
6776e8c
 
52409f1
 
 
ccbdb32
6ea7f05
ccbdb32
6ea7f05
 
 
 
 
 
 
 
 
ccbdb32
 
2c75576
 
 
 
6776e8c
52409f1
 
d68759e
 
 
 
6776e8c
2c75576
 
 
52409f1
 
1a48d31
 
 
 
8db36ff
1a48d31
 
2e463c2
 
bc6b1cc
2e463c2
 
 
 
d702bf4
d348068
d702bf4
d348068
 
 
8db36ff
b1cd1c8
36bd0a9
 
 
 
 
8db36ff
 
36bd0a9
 
 
 
 
 
52409f1
 
 
 
 
 
31ee0fc
52409f1
 
300b66c
 
 
 
 
 
 
52409f1
 
 
 
8e6b896
 
 
d68759e
8e6b896
d68759e
8e6b896
52647ec
 
52409f1
b4ce27c
 
 
 
300b66c
 
 
b4ce27c
 
 
52409f1
b4ce27c
 
 
 
 
2401abf
b4ce27c
 
2401abf
 
52409f1
b4ce27c
 
 
 
 
 
 
 
 
 
 
 
 
19004e8
b4ce27c
52409f1
b4ce27c
 
bcdd585
8db36ff
 
 
bcdd585
3c641c9
b4ce27c
 
 
 
 
 
52409f1
 
b4ce27c
52409f1
 
7049bd0
4dcb9ae
52409f1
 
 
 
 
 
b1cd1c8
 
 
52409f1
 
a57b805
52409f1
 
4cda010
b19f57b
b1846f7
d617adf
 
300b66c
f7357c0
b1cd1c8
 
 
5551feb
b1cd1c8
 
 
 
b19f57b
b1cd1c8
 
c44f0c8
b1cd1c8
 
 
 
52409f1
 
 
 
b19f57b
52409f1
 
b1cd1c8
b1846f7
b1cd1c8
52409f1
 
 
 
ee49e9e
7bf1165
 
ee49e9e
 
ce6c967
 
 
 
 
ee49e9e
dadaf13
 
8bc6606
dadaf13
 
ce6c967
dadaf13
b1cd1c8
 
 
 
 
 
 
 
 
 
bf3be31
ee49e9e
 
ce6c967
 
 
 
 
b1cd1c8
52409f1
dba4524
b19f57b
52409f1
cee1bed
ee49e9e
52409f1
 
 
 
 
 
 
291cd48
52409f1
 
561a48f
 
76a528b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import gradio as gr

from PIL import Image
from moviepy.editor import VideoFileClip, AudioFileClip

import os
from openai import OpenAI
import subprocess
from pathlib import Path
import uuid
import tempfile
import shlex
import shutil

# Supported models configuration
MODELS = {
    "deepseek-ai/DeepSeek-V3": {
        "base_url": "https://api.deepseek.com/v1",
        "env_key": "DEEPSEEK_API_KEY",
    },
    "Qwen/Qwen2.5-Coder-32B-Instruct": {
        "base_url": "https://api-inference.huggingface.co/v1/",
        "env_key": "HF_TOKEN",
    },
}

# Initialize client with first available model
client = OpenAI(
    base_url=next(iter(MODELS.values()))["base_url"],
    api_key=os.environ[next(iter(MODELS.values()))["env_key"]],
)

allowed_medias = [
    ".png",
    ".jpg",
    ".webp",
    ".jpeg",
    ".tiff",
    ".bmp",
    ".gif",
    ".svg",
    ".mp3",
    ".wav",
    ".ogg",
    ".mp4",
    ".avi",
    ".mov",
    ".mkv",
    ".flv",
    ".wmv",
    ".webm",
    ".mpg",
    ".mpeg",
    ".m4v",
    ".3gp",
    ".3g2",
    ".3gpp",
]


def get_files_infos(files):
    results = []
    for file in files:
        file_path = Path(file.name)
        info = {}
        info["size"] = os.path.getsize(file_path)
        # Sanitize filename by replacing spaces with underscores
        info["name"] = file_path.name.replace(" ", "_")
        file_extension = file_path.suffix

        if file_extension in (".mp4", ".avi", ".mkv", ".mov"):
            info["type"] = "video"
            video = VideoFileClip(file.name)
            info["duration"] = video.duration
            info["dimensions"] = "{}x{}".format(video.size[0], video.size[1])
            if video.audio:
                info["type"] = "video/audio"
                info["audio_channels"] = video.audio.nchannels
            video.close()
        elif file_extension in (".mp3", ".wav"):
            info["type"] = "audio"
            audio = AudioFileClip(file.name)
            info["duration"] = audio.duration
            info["audio_channels"] = audio.nchannels
            audio.close()
        elif file_extension in (
            ".png",
            ".jpg",
            ".jpeg",
            ".tiff",
            ".bmp",
            ".gif",
            ".svg",
        ):
            info["type"] = "image"
            img = Image.open(file.name)
            info["dimensions"] = "{}x{}".format(img.size[0], img.size[1])
        results.append(info)
    return results


def get_completion(prompt, files_info, top_p, temperature, model_choice):
    # Create table header
    files_info_string = "| Type | Name | Dimensions | Duration | Audio Channels |\n"
    files_info_string += "|------|------|------------|-----------|--------|\n"

    # Add each file as a table row
    for file_info in files_info:
        dimensions = file_info.get("dimensions", "-")
        duration = (
            f"{file_info.get('duration', '-')}s" if "duration" in file_info else "-"
        )
        audio = (
            f"{file_info.get('audio_channels', '-')} channels"
            if "audio_channels" in file_info
            else "-"
        )

        files_info_string += f"| {file_info['type']} | {file_info['name']} | {dimensions} | {duration} | {audio} |\n"

    messages = [
        {
            "role": "system",
            "content": """
You are a very experienced media engineer, controlling a UNIX terminal.
You are an FFMPEG expert with years of experience and multiple contributions to the FFMPEG project.

You are given:
(1) a set of video, audio and/or image assets. Including their name, duration, dimensions and file size
(2) the description of a new video you need to create from the list of assets

Your objective is to generate the SIMPLEST POSSIBLE single ffmpeg command to create the requested video.

Key requirements:
    - Use the absolute minimum number of ffmpeg options needed
    - Avoid complex filter chains or filter_complex if possible
    - Prefer simple concatenation, scaling, and basic filters
    - Output exactly ONE command that will be directly pasted into the terminal
    - Never output multiple commands chained together
    - Output the command in a single line (no line breaks or multiple lines)
    - If the user asks for waveform visualization make sure to set the mode to `line` with and the use the full width of the video. Also concatenate the audio into a single channel.
    - For image sequences: Use -framerate and pattern matching (like 'img%d.jpg') when possible, falling back to individual image processing with -loop 1 and appropriate filters only when necessary.
    - When showing file operations or commands, always use explicit paths and filenames without wildcards - avoid using asterisk (*) or glob patterns. Instead, use specific numbered sequences (like %d), explicit file lists, or show the full filename.

Remember: Simpler is better. Only use advanced ffmpeg features if absolutely necessary for the requested output.
""",
        },
        {
            "role": "user",
            "content": f"""Always output the media as video/mp4 and output file with "output.mp4". Provide only the shell command without any explanations.
The current assets and objective follow. Reply with the FFMPEG command:

AVAILABLE ASSETS LIST:

{files_info_string}

OBJECTIVE: {prompt} and output at "output.mp4"
YOUR FFMPEG COMMAND:
         """,
        },
    ]
    try:
        # Print the complete prompt
        print("\n=== COMPLETE PROMPT ===")
        for msg in messages:
            print(f"\n[{msg['role'].upper()}]:")
            print(msg["content"])
        print("=====================\n")

        if model_choice not in MODELS:
            raise ValueError(f"Model {model_choice} is not supported")

        model_config = MODELS[model_choice]
        client.base_url = model_config["base_url"]
        client.api_key = os.environ[model_config["env_key"]]
        model = "deepseek-chat" if "deepseek" in model_choice.lower() else model_choice

        completion = client.chat.completions.create(
            model=model,
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_tokens=2048,
        )
        content = completion.choices[0].message.content
        # Extract command from code block if present
        if "```" in content:
            # Find content between ```sh or ```bash and the next ```
            import re

            command = re.search(r"```(?:sh|bash)?\n(.*?)\n```", content, re.DOTALL)
            if command:
                command = command.group(1).strip()
            else:
                command = content.replace("\n", "")
        else:
            command = content.replace("\n", "")

        # remove output.mp4 with the actual output file path
        command = command.replace("output.mp4", "")

        return command
    except Exception as e:
        raise Exception("API Error")


def update(
    files,
    prompt,
    top_p=1,
    temperature=1,
    model_choice="Qwen/Qwen2.5-Coder-32B-Instruct",
):
    if prompt == "":
        raise gr.Error("Please enter a prompt.")

    files_info = get_files_infos(files)
    # disable this if you're running the app locally or on your own server
    for file_info in files_info:
        if file_info["type"] == "video":
            if file_info["duration"] > 120:
                raise gr.Error(
                    "Please make sure all videos are less than 2 minute long."
                )
        if file_info["size"] > 100000000:
            raise gr.Error("Please make sure all files are less than 100MB in size.")

    attempts = 0
    while attempts < 2:
        print("ATTEMPT", attempts)
        try:
            command_string = get_completion(
                prompt, files_info, top_p, temperature, model_choice
            )
            print(
                f"""///PROMTP {prompt} \n\n/// START OF COMMAND ///:\n\n{command_string}\n\n/// END OF COMMAND ///\n\n"""
            )

            # split command string into list of arguments
            args = shlex.split(command_string)
            if args[0] != "ffmpeg":
                raise Exception("Command does not start with ffmpeg")
            temp_dir = tempfile.mkdtemp()
            # copy files to temp dir with sanitized names
            for file in files:
                file_path = Path(file.name)
                sanitized_name = file_path.name.replace(" ", "_")
                shutil.copy(file_path, Path(temp_dir) / sanitized_name)

            # test if ffmpeg command is valid dry run
            ffmpg_dry_run = subprocess.run(
                args + ["-f", "null", "-"],
                stderr=subprocess.PIPE,
                text=True,
                cwd=temp_dir,
            )
            if ffmpg_dry_run.returncode == 0:
                print("Command is valid.")
            else:
                print("Command is not valid. Error output:")
                print(ffmpg_dry_run.stderr)
                raise Exception(
                    "FFMPEG generated command is not valid. Please try something else."
                )

            output_file_name = f"output_{uuid.uuid4()}.mp4"
            output_file_path = str((Path(temp_dir) / output_file_name).resolve())
            final_command = args + ["-y", output_file_path]
            print(
                f"\n=== EXECUTING FFMPEG COMMAND ===\nffmpeg {' '.join(final_command[1:])}\n"
            )
            subprocess.run(final_command, cwd=temp_dir)
            generated_command = f"### Generated Command\n```bash\nffmpeg {' '.join(args[1:])} -y output.mp4\n```"
            return output_file_path, gr.update(value=generated_command)
        except Exception as e:
            attempts += 1
            if attempts >= 2:
                print("FROM UPDATE", e)
                raise gr.Error(e)


with gr.Blocks() as demo:
    gr.Markdown(
        """
            # 🏞 AI Video Composer
            Compose new videos from your assets using natural language. Add video, image and audio assets and let [Qwen2.5-Coder](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) or [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base) generate a new video for you (using FFMPEG).
        """,
        elem_id="header",
    )
    with gr.Row():
        with gr.Column():
            user_files = gr.File(
                file_count="multiple",
                label="Media files",
                file_types=allowed_medias,
            )
            user_prompt = gr.Textbox(
                placeholder="eg: Remove the 3 first seconds of the video",
                label="Instructions",
            )
            btn = gr.Button("Run")
            with gr.Accordion("Parameters", open=False):
                model_choice = gr.Radio(
                    choices=list(MODELS.keys()),
                    value=list(MODELS.keys())[0],
                    label="Model",
                )
                top_p = gr.Slider(
                    minimum=-0,
                    maximum=1.0,
                    value=0.7,
                    step=0.05,
                    interactive=True,
                    label="Top-p (nucleus sampling)",
                )
                temperature = gr.Slider(
                    minimum=-0,
                    maximum=5.0,
                    value=0.1,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )
        with gr.Column():
            generated_video = gr.Video(
                interactive=False, label="Generated Video", include_audio=True
            )
            generated_command = gr.Markdown()

        btn.click(
            fn=update,
            inputs=[user_files, user_prompt, top_p, temperature, model_choice],
            outputs=[generated_video, generated_command],
        )
    with gr.Row():
        gr.Examples(
            examples=[
                [
                    ["./examples/ai_talk.wav", "./examples/bg-image.png"],
                    "Use the image as the background with a waveform visualization for the audio positioned in center of the video.",
                    0.7,
                    0.1,
                    (
                        list(MODELS.keys())[1]
                        if len(MODELS) > 1
                        else list(MODELS.keys())[0]
                    ),
                ],
                [
                    ["./examples/ai_talk.wav", "./examples/bg-image.png"],
                    "Use the image as the background with a waveform visualization for the audio positioned in center of the video. Make sure the waveform has a max height of 250 pixels.",
                    0.7,
                    0.1,
                    list(MODELS.keys())[0],
                ],
                [
                    [
                        "./examples/cat1.jpeg",
                        "./examples/cat2.jpeg",
                        "./examples/cat3.jpeg",
                        "./examples/cat4.jpeg",
                        "./examples/cat5.jpeg",
                        "./examples/cat6.jpeg",
                        "./examples/heat-wave.mp3",
                    ],
                    "Create a 3x2 grid of the cat images with the audio as background music. Make the video duration match the audio duration.",
                    0.7,
                    0.1,
                    (
                        list(MODELS.keys())[1]
                        if len(MODELS) > 1
                        else list(MODELS.keys())[0]
                    ),
                ],
            ],
            inputs=[user_files, user_prompt, top_p, temperature, model_choice],
            outputs=[generated_video, generated_command],
            fn=update,
            run_on_click=True,
            cache_examples=False,
        )

    with gr.Row():
        gr.Markdown(
            """
            If you have idea to improve this please open a PR:

            [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/raw/main/open-a-pr-lg-light.svg)](https://huggingface.co/spaces/huggingface-projects/video-composer-gpt4/discussions)
            """,
        )

demo.queue(default_concurrency_limit=200)
demo.launch(show_api=False, ssr_mode=False)