Spaces:
Running
Running
theo
commited on
Commit
·
08a65ff
1
Parent(s):
927d443
black + simplification
Browse files- tagging_app.py +165 -381
tagging_app.py
CHANGED
@@ -1,19 +1,11 @@
|
|
1 |
-
import copy
|
2 |
-
import datasets
|
3 |
import json
|
4 |
import os
|
5 |
-
import streamlit as st
|
6 |
-
import sys
|
7 |
-
import yaml
|
8 |
from dataclasses import asdict
|
9 |
-
from pathlib import Path
|
10 |
-
from typing import Dict
|
11 |
-
|
12 |
from glob import glob
|
13 |
-
from os.path import join as pjoin
|
14 |
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
st.set_page_config(
|
19 |
page_title="HF Dataset Tagging App",
|
@@ -56,110 +48,6 @@ creator_set = {
|
|
56 |
## Helper functions
|
57 |
########################
|
58 |
|
59 |
-
@st.cache
|
60 |
-
def filter_features(features, name="", is_sequence=False):
|
61 |
-
if isinstance(features, list):
|
62 |
-
return filter_features(features[0], name, is_sequence=True)
|
63 |
-
if not isinstance(features, dict):
|
64 |
-
return {}, []
|
65 |
-
if features.get("_type", None) == 'Sequence':
|
66 |
-
if "dtype" in features["feature"] or ("_type" in features["feature"] and features["feature"]["_type"] == "ClassLabel"):
|
67 |
-
pre_filtered, desc = filter_features(features["feature"], name, is_sequence=True)
|
68 |
-
filtered = {
|
69 |
-
"feature_type": features["_type"],
|
70 |
-
"feature": pre_filtered,
|
71 |
-
}
|
72 |
-
return filtered, desc
|
73 |
-
else:
|
74 |
-
filtered = {"feature_type": features["_type"]}
|
75 |
-
if is_sequence:
|
76 |
-
desc = [f"- `{name}`: a `list` of dictionary features containing:"]
|
77 |
-
else:
|
78 |
-
desc = [f"- `{name}`: a dictionary feature containing:"]
|
79 |
-
for k, v in features["feature"].items():
|
80 |
-
pre_filtered, pre_desc = filter_features(v, name=k)
|
81 |
-
filtered[k] = pre_filtered
|
82 |
-
desc += [" " + d for d in pre_desc]
|
83 |
-
return filtered, desc
|
84 |
-
elif features.get("_type", None) == 'Value':
|
85 |
-
filtered = {
|
86 |
-
"feature_type": features["_type"],
|
87 |
-
"dtype": features["dtype"],
|
88 |
-
}
|
89 |
-
if is_sequence:
|
90 |
-
desc = f"- `{name}`: a `list` of `{features['dtype']}` features."
|
91 |
-
else:
|
92 |
-
desc = f"- `{name}`: a `{features['dtype']}` feature."
|
93 |
-
return filtered, [desc]
|
94 |
-
elif features.get("_type", None) == 'ClassLabel':
|
95 |
-
filtered = {
|
96 |
-
"feature_type": features["_type"],
|
97 |
-
"dtype": "int32",
|
98 |
-
"class_names": features["names"],
|
99 |
-
}
|
100 |
-
if is_sequence:
|
101 |
-
desc = f"- `{name}`: a `list` of classification labels, with possible values including {', '.join(['`'+nm+'`' for nm in features['names'][:5]])}."
|
102 |
-
else:
|
103 |
-
desc = f"- `{name}`: a classification label, with possible values including {', '.join(['`'+nm+'`' for nm in features['names'][:5]])}."
|
104 |
-
return filtered, [desc]
|
105 |
-
elif features.get("_type", None) in ['Translation', 'TranslationVariableLanguages']:
|
106 |
-
filtered = {
|
107 |
-
"feature_type": features["_type"],
|
108 |
-
"dtype": "string",
|
109 |
-
"languages": features["languages"],
|
110 |
-
}
|
111 |
-
if is_sequence:
|
112 |
-
desc = f"- `{name}`: a `list` of multilingual `string` variables, with possible languages including {', '.join(['`'+nm+'`' for nm in features['languages'][:5]])}."
|
113 |
-
else:
|
114 |
-
desc = f"- `{name}`: a multilingual `string` variable, with possible languages including {', '.join(['`'+nm+'`' for nm in features['languages'][:5]])}."
|
115 |
-
return filtered, [desc]
|
116 |
-
else:
|
117 |
-
filtered = {}
|
118 |
-
desc = []
|
119 |
-
for k, v in features.items():
|
120 |
-
pre_filtered, pre_desc = filter_features(v, name=k)
|
121 |
-
filtered[k] = pre_filtered
|
122 |
-
desc += pre_desc
|
123 |
-
return filtered, desc
|
124 |
-
|
125 |
-
@st.cache
|
126 |
-
def find_languages(feature_dict):
|
127 |
-
if type(feature_dict) in [dict, datasets.features.Features]:
|
128 |
-
languages = [l for l in feature_dict.get('languages', [])]
|
129 |
-
for k, v in feature_dict.items():
|
130 |
-
languages += [l for l in find_languages(v)]
|
131 |
-
return languages
|
132 |
-
else:
|
133 |
-
return []
|
134 |
-
|
135 |
-
keep_keys = ['description', 'features', 'homepage', 'license', 'splits']
|
136 |
-
|
137 |
-
@st.cache(show_spinner=False)
|
138 |
-
def get_info_dicts(dataset_id):
|
139 |
-
module_path = datasets.load.prepare_module(dataset_id, dataset=True)
|
140 |
-
builder_cls = datasets.load.import_main_class(module_path[0], dataset=True)
|
141 |
-
build_confs = builder_cls.BUILDER_CONFIGS
|
142 |
-
confs = [conf.name for conf in build_confs] if len(build_confs) > 0 else ['default']
|
143 |
-
all_info_dicts = {}
|
144 |
-
for conf in confs:
|
145 |
-
builder = builder_cls(name=conf)
|
146 |
-
conf_info_dict = dict([(k, v) for k, v in asdict(builder.info).items() if k in keep_keys])
|
147 |
-
all_info_dicts[conf] = conf_info_dict
|
148 |
-
return all_info_dicts
|
149 |
-
|
150 |
-
@st.cache
|
151 |
-
def get_dataset_list():
|
152 |
-
return datasets.list_datasets()
|
153 |
-
|
154 |
-
@st.cache(show_spinner=False)
|
155 |
-
def load_all_dataset_infos(dataset_list):
|
156 |
-
dataset_infos = {}
|
157 |
-
for did in dataset_list:
|
158 |
-
try:
|
159 |
-
dataset_infos[did] = get_info_dicts(did)
|
160 |
-
except:
|
161 |
-
print("+++++++++++ MISSED", did)
|
162 |
-
return dataset_infos
|
163 |
|
164 |
def load_existing_tags():
|
165 |
has_tags = {}
|
@@ -169,20 +57,35 @@ def load_existing_tags():
|
|
169 |
has_tags[did][cid] = fname
|
170 |
return has_tags
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
########################
|
173 |
## Dataset selection
|
174 |
########################
|
175 |
|
176 |
-
st.sidebar.markdown(
|
177 |
-
"""<center>
|
178 |
-
<a href="https://github.com/huggingface/datasets">
|
179 |
-
<img src="https://raw.githubusercontent.com/huggingface/datasets/master/docs/source/imgs/datasets_logo_name.jpg" width="200"></a>
|
180 |
-
</center>""",
|
181 |
-
unsafe_allow_html=True,
|
182 |
-
)
|
183 |
|
184 |
-
|
185 |
-
|
|
|
186 |
|
187 |
This app aims to make it easier to add structured tags to the datasets present in the library.
|
188 |
|
@@ -190,239 +93,158 @@ Each configuration requires its own tasks, as these often correspond to distinct
|
|
190 |
to pre-load the tag sets from another dataset or configuration to avoid too much redundancy.
|
191 |
|
192 |
The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md
|
193 |
-
"""
|
194 |
-
|
195 |
-
existing_tag_sets = load_existing_tags()
|
196 |
-
all_dataset_ids = list(existing_tag_sets.keys()) if not load_remote_datasets else copy.deepcopy(get_dataset_list())
|
197 |
-
all_dataset_infos = {} if not load_remote_datasets else load_all_dataset_infos(all_dataset_ids)
|
198 |
-
|
199 |
-
st.sidebar.markdown(app_desc)
|
200 |
-
|
201 |
-
# option to only select from datasets that still need to be annotated
|
202 |
-
all_info_dicts = {}
|
203 |
-
path_to_info = st.sidebar.text_input("Please enter the path to the folder where the dataset_infos.json file was generated", "/path/to/dataset/")
|
204 |
-
if path_to_info not in ["/path/to/dataset/", ""]:
|
205 |
-
dataset_infos = json.load(open(pjoin(path_to_info, "dataset_infos.json")))
|
206 |
-
confs = dataset_infos.keys()
|
207 |
-
all_info_dicts = {}
|
208 |
-
for conf, info in dataset_infos.items():
|
209 |
-
conf_info_dict = dict([(k, info[k]) for k in keep_keys])
|
210 |
-
all_info_dicts[conf] = conf_info_dict
|
211 |
-
dataset_id = list(dataset_infos.values())[0]["builder_name"]
|
212 |
-
else:
|
213 |
-
dataset_id = "tmp_dir"
|
214 |
-
all_info_dicts = {
|
215 |
-
"default":{
|
216 |
-
'description': "",
|
217 |
-
'features': {},
|
218 |
-
'homepage': "",
|
219 |
-
'license': "",
|
220 |
-
'splits': {},
|
221 |
-
}
|
222 |
-
}
|
223 |
|
|
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
label="Choose configuration",
|
229 |
-
options=config_choose_list,
|
230 |
)
|
231 |
|
232 |
-
config_infos = all_info_dicts[config_id]
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
features, feature_descs = filter_features(config_infos['features'])
|
249 |
-
with c1.beta_expander(f"Dataset features for config: {config_id}", expanded=False):
|
250 |
-
st.write(features)
|
251 |
|
252 |
-
########################
|
253 |
-
## Dataset tagging
|
254 |
-
########################
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
##########
|
259 |
-
# Pre-load information to speed things up
|
260 |
-
##########
|
261 |
-
c2.markdown("#### Pre-loading an existing tag set")
|
262 |
-
|
263 |
-
pre_loaded = {
|
264 |
-
"task_categories": [],
|
265 |
-
"task_ids": [],
|
266 |
-
"multilinguality": [],
|
267 |
-
"languages": [],
|
268 |
-
"language_creators": [],
|
269 |
-
"annotations_creators": [],
|
270 |
-
"source_datasets": [],
|
271 |
-
"size_categories": [],
|
272 |
-
"licenses": [],
|
273 |
-
}
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
options=did_choice_list,
|
289 |
-
index=did_choice_list.index(dataset_id) if dataset_id in did_choice_list else 0,
|
290 |
-
)
|
291 |
-
cid = st.selectbox(
|
292 |
-
label="Choose config to load tag set from",
|
293 |
-
options=list(existing_tag_sets[did].keys()),
|
294 |
-
index=0,
|
295 |
-
)
|
296 |
-
if st.checkbox("pre-load this tag set"):
|
297 |
-
pre_loaded = json.load(open(existing_tag_sets[did][cid]))
|
298 |
-
else:
|
299 |
-
st.write("There are currently no other saved tag sets.")
|
300 |
-
|
301 |
-
pre_loaded["languages"] = list(set(pre_loaded["languages"] + find_languages(features)))
|
302 |
-
if config_infos["license"] in license_set:
|
303 |
-
pre_loaded["licenses"] = list(set(pre_loaded["licenses"] + [config_infos["license"]]))
|
304 |
-
|
305 |
-
##########
|
306 |
-
# Modify or add new tags
|
307 |
-
##########
|
308 |
-
c2.markdown("#### Editing the tag set")
|
309 |
-
c2.markdown("> *Expand the following boxes to edit the tag set. For each of the questions, choose all that apply, at least one option:*")
|
310 |
-
|
311 |
-
with c2.beta_expander("- Supported tasks", expanded=True):
|
312 |
-
task_categories = st.multiselect(
|
313 |
-
"What categories of task does the dataset support?",
|
314 |
-
options=list(task_set.keys()),
|
315 |
-
default=pre_loaded["task_categories"],
|
316 |
-
format_func=lambda tg: f"{tg} : {task_set[tg]['description']}",
|
317 |
-
)
|
318 |
-
task_specifics = []
|
319 |
-
for tg in task_categories:
|
320 |
-
task_specs = st.multiselect(
|
321 |
-
f"What specific *{tg}* tasks does the dataset support?",
|
322 |
-
options=task_set[tg]["options"],
|
323 |
-
default=[ts for ts in pre_loaded["task_ids"] if ts in task_set[tg]["options"]],
|
324 |
-
)
|
325 |
-
if "other" in task_specs:
|
326 |
-
other_task = st.text_input(
|
327 |
-
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
|
328 |
-
value='my-task-description',
|
329 |
-
)
|
330 |
-
st.write(f"Registering {tg}-other-{other_task} task")
|
331 |
-
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
|
332 |
-
task_specifics += task_specs
|
333 |
-
|
334 |
-
with c2.beta_expander("- Languages", expanded=True):
|
335 |
-
multilinguality = st.multiselect(
|
336 |
-
"Does the dataset contain more than one language?",
|
337 |
-
options=list(multilinguality_set.keys()),
|
338 |
-
default=pre_loaded["multilinguality"],
|
339 |
-
format_func= lambda m: f"{m} : {multilinguality_set[m]}",
|
340 |
)
|
341 |
-
if "other" in
|
342 |
-
|
343 |
-
"You selected 'other'
|
344 |
-
value=
|
345 |
)
|
346 |
-
st.write(f"Registering other-{
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
371 |
)
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
389 |
)
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
"Which other datasets does this one use data from?",
|
395 |
-
options=all_dataset_ids + ["other"],
|
396 |
-
default=pre_select_ext_b,
|
397 |
)
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
num_examples = (
|
408 |
-
sum([dct.get('num_examples', 0) for spl, dct in config_infos['splits'].items()])
|
409 |
-
if config_infos.get('splits', None) is not None
|
410 |
-
else -1
|
411 |
)
|
412 |
-
if num_examples < 0:
|
413 |
-
size_cat = "unknown"
|
414 |
-
elif num_examples < 1000:
|
415 |
-
size_cat = "n<1K"
|
416 |
-
elif num_examples < 10000:
|
417 |
-
size_cat = "1K<n<10K"
|
418 |
-
elif num_examples < 100000:
|
419 |
-
size_cat = "10K<n<100K"
|
420 |
-
elif num_examples < 1000000:
|
421 |
-
size_cat = "100K<n<1M"
|
422 |
-
else:
|
423 |
-
size_cat = "n>1M"
|
424 |
|
425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
"task_categories": task_categories,
|
427 |
"task_ids": task_specifics,
|
428 |
"multilinguality": multilinguality,
|
@@ -430,47 +252,9 @@ res = {
|
|
430 |
"language_creators": language_creators,
|
431 |
"annotations_creators": annotations_creators,
|
432 |
"source_datasets": source_datasets,
|
433 |
-
"size_categories":
|
434 |
"licenses": licenses,
|
435 |
-
}
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
########################
|
440 |
-
c3.markdown("### Finalized tag set:")
|
441 |
-
|
442 |
-
if c3.button("Done? Save to File!"):
|
443 |
-
if not os.path.isdir(pjoin('saved_tags', dataset_id)):
|
444 |
-
_ = os.mkdir(pjoin('saved_tags', dataset_id))
|
445 |
-
if not os.path.isdir(pjoin('saved_tags', dataset_id, config_id)):
|
446 |
-
_ = os.mkdir(pjoin('saved_tags', dataset_id, config_id))
|
447 |
-
json.dump(res, open(pjoin('saved_tags', dataset_id, config_id, 'tags.json'), 'w'))
|
448 |
-
|
449 |
-
with c3.beta_expander("Show YAML output aggregating the tags saved for all configs", expanded=False):
|
450 |
-
task_saved_configs = dict([
|
451 |
-
(Path(fname).parent.name, json.load(open(fname)))
|
452 |
-
for fname in glob(f"saved_tags/{dataset_id}/*/tags.json")
|
453 |
-
])
|
454 |
-
aggregate_config = {}
|
455 |
-
for conf_name, saved_tags in task_saved_configs.items():
|
456 |
-
for tag_k, tag_ls in saved_tags.items():
|
457 |
-
aggregate_config[tag_k] = aggregate_config.get(tag_k, {})
|
458 |
-
aggregate_config[tag_k][conf_name] = tuple(sorted(tag_ls))
|
459 |
-
for tag_k in aggregate_config:
|
460 |
-
if len(set(aggregate_config[tag_k].values())) == 1:
|
461 |
-
aggregate_config[tag_k] = list(list(set(aggregate_config[tag_k].values()))[0])
|
462 |
-
else:
|
463 |
-
for conf_name in aggregate_config[tag_k]:
|
464 |
-
aggregate_config[tag_k][conf_name] = list(aggregate_config[tag_k][conf_name])
|
465 |
-
st.text('---\n' + yaml.dump(aggregate_config) + '---')
|
466 |
-
|
467 |
-
with c3.beta_expander(f"Show Markdown Data Fields for config: {config_id}", expanded=True):
|
468 |
-
st.text('\n'.join(feature_descs))
|
469 |
-
|
470 |
-
with c3.beta_expander("Show JSON output for the current config"):
|
471 |
-
st.write(res)
|
472 |
-
|
473 |
-
c3.markdown("--- ")
|
474 |
-
|
475 |
-
with c3.beta_expander("----> show full task set <----", expanded=True):
|
476 |
-
st.write(task_set)
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
|
|
|
|
|
|
3 |
from dataclasses import asdict
|
|
|
|
|
|
|
4 |
from glob import glob
|
|
|
5 |
|
6 |
+
import datasets
|
7 |
+
import streamlit as st
|
8 |
+
import yaml
|
9 |
|
10 |
st.set_page_config(
|
11 |
page_title="HF Dataset Tagging App",
|
|
|
48 |
## Helper functions
|
49 |
########################
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def load_existing_tags():
|
53 |
has_tags = {}
|
|
|
57 |
has_tags[did][cid] = fname
|
58 |
return has_tags
|
59 |
|
60 |
+
|
61 |
+
def new_pre_loaded():
|
62 |
+
return {
|
63 |
+
"task_categories": [],
|
64 |
+
"task_ids": [],
|
65 |
+
"multilinguality": [],
|
66 |
+
"languages": [],
|
67 |
+
"language_creators": [],
|
68 |
+
"annotations_creators": [],
|
69 |
+
"source_datasets": [],
|
70 |
+
"size_categories": [],
|
71 |
+
"licenses": [],
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
pre_loaded = new_pre_loaded()
|
76 |
+
|
77 |
+
existing_tag_sets = load_existing_tags()
|
78 |
+
all_dataset_ids = list(existing_tag_sets.keys())
|
79 |
+
|
80 |
+
|
81 |
########################
|
82 |
## Dataset selection
|
83 |
########################
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
st.sidebar.markdown(
|
87 |
+
"""
|
88 |
+
# HuggingFace Dataset Tagger
|
89 |
|
90 |
This app aims to make it easier to add structured tags to the datasets present in the library.
|
91 |
|
|
|
93 |
to pre-load the tag sets from another dataset or configuration to avoid too much redundancy.
|
94 |
|
95 |
The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
### Preloading an existing tag set
|
98 |
|
99 |
+
You can load an existing tag set to get started if you want.
|
100 |
+
Beware that clicking pre-load will overwrite the current state!
|
101 |
+
"""
|
|
|
|
|
102 |
)
|
103 |
|
|
|
104 |
|
105 |
+
qp = st.experimental_get_query_params()
|
106 |
+
preload = qp.get("preload_dataset", list())
|
107 |
+
did_index = 2
|
108 |
+
if len(preload) == 1 and preload[0] in all_dataset_ids:
|
109 |
+
did_qp, *_ = preload
|
110 |
+
cid_qp = next(iter(existing_tag_sets[did_qp]))
|
111 |
+
pre_loaded = json.load(open(existing_tag_sets[did_qp][cid_qp]))
|
112 |
+
did_index = all_dataset_ids.index(did_qp)
|
113 |
+
|
114 |
+
did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index)
|
115 |
+
if len(existing_tag_sets[did]) > 1:
|
116 |
+
cid = st.sidebar.selectbox(
|
117 |
+
label="Choose config to load tag set from",
|
118 |
+
options=list(existing_tag_sets[did].keys()),
|
119 |
+
index=0,
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
cid = next(iter(existing_tag_sets[did].keys()))
|
123 |
|
124 |
+
if st.sidebar.button("pre-load this tag set"):
|
125 |
+
pre_loaded = json.load(open(existing_tag_sets[did][cid]))
|
126 |
+
st.experimental_set_query_params(preload_dataset=did)
|
127 |
+
if st.sidebar.button("flush state"):
|
128 |
+
pre_loaded = new_pre_loaded()
|
129 |
+
st.experimental_set_query_params()
|
130 |
|
131 |
+
leftcol, _, rightcol = st.beta_columns([12, 1, 12])
|
|
|
|
|
|
|
132 |
|
|
|
|
|
|
|
133 |
|
134 |
+
pre_loaded["languages"] = list(set(pre_loaded["languages"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
leftcol.markdown("### Supported tasks")
|
137 |
+
task_categories = leftcol.multiselect(
|
138 |
+
"What categories of task does the dataset support?",
|
139 |
+
options=list(task_set.keys()),
|
140 |
+
default=pre_loaded["task_categories"],
|
141 |
+
format_func=lambda tg: f"{tg} : {task_set[tg]['description']}",
|
142 |
+
)
|
143 |
+
task_specifics = []
|
144 |
+
for tg in task_categories:
|
145 |
+
task_specs = leftcol.multiselect(
|
146 |
+
f"What specific *{tg}* tasks does the dataset support?",
|
147 |
+
options=task_set[tg]["options"],
|
148 |
+
default=[ts for ts in pre_loaded["task_ids"] if ts in task_set[tg]["options"]],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
)
|
150 |
+
if "other" in task_specs:
|
151 |
+
other_task = st.text_input(
|
152 |
+
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
|
153 |
+
value="my-task-description",
|
154 |
)
|
155 |
+
st.write(f"Registering {tg}-other-{other_task} task")
|
156 |
+
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
|
157 |
+
task_specifics += task_specs
|
158 |
+
|
159 |
+
leftcol.markdown("### Languages")
|
160 |
+
multilinguality = leftcol.multiselect(
|
161 |
+
"Does the dataset contain more than one language?",
|
162 |
+
options=list(multilinguality_set.keys()),
|
163 |
+
default=pre_loaded["multilinguality"],
|
164 |
+
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
|
165 |
+
)
|
166 |
+
if "other" in multilinguality:
|
167 |
+
other_multilinguality = st.text_input(
|
168 |
+
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
|
169 |
+
value="my-multilinguality",
|
170 |
)
|
171 |
+
st.write(f"Registering other-{other_multilinguality} multilinguality")
|
172 |
+
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
|
173 |
+
languages = leftcol.multiselect(
|
174 |
+
"What languages are represented in the dataset?",
|
175 |
+
options=list(language_set.keys()),
|
176 |
+
default=pre_loaded["languages"],
|
177 |
+
format_func=lambda m: f"{m} : {language_set[m]}",
|
178 |
+
)
|
179 |
|
180 |
+
leftcol.markdown("### Dataset creators")
|
181 |
+
language_creators = leftcol.multiselect(
|
182 |
+
"Where does the text in the dataset come from?",
|
183 |
+
options=creator_set["language"],
|
184 |
+
default=pre_loaded["language_creators"],
|
185 |
+
)
|
186 |
+
annotations_creators = leftcol.multiselect(
|
187 |
+
"Where do the annotations in the dataset come from?",
|
188 |
+
options=creator_set["annotations"],
|
189 |
+
default=pre_loaded["annotations_creators"],
|
190 |
+
)
|
191 |
+
licenses = leftcol.multiselect(
|
192 |
+
"What licenses is the dataset under?",
|
193 |
+
options=list(license_set.keys()),
|
194 |
+
default=pre_loaded["licenses"],
|
195 |
+
format_func=lambda l: f"{l} : {license_set[l]}",
|
196 |
+
)
|
197 |
+
if "other" in licenses:
|
198 |
+
other_license = st.text_input(
|
199 |
+
"You selected 'other' type of license. Please enter a short hyphen-separated description:",
|
200 |
+
value="my-license",
|
201 |
)
|
202 |
+
st.write(f"Registering other-{other_license} license")
|
203 |
+
licenses[licenses.index("other")] = f"other-{other_license}"
|
204 |
+
# link ro supported datasets
|
205 |
+
pre_select_ext_a = []
|
206 |
+
if "original" in pre_loaded["source_datasets"]:
|
207 |
+
pre_select_ext_a += ["original"]
|
208 |
+
if any([p.startswith("extended") for p in pre_loaded["source_datasets"]]):
|
209 |
+
pre_select_ext_a += ["extended"]
|
210 |
+
extended = leftcol.multiselect(
|
211 |
+
"Does the dataset contain original data and/or was it extended from other datasets?",
|
212 |
+
options=["original", "extended"],
|
213 |
+
default=pre_select_ext_a,
|
214 |
+
)
|
215 |
+
source_datasets = ["original"] if "original" in extended else []
|
216 |
+
if "extended" in extended:
|
217 |
+
pre_select_ext_b = [p.split("|")[1] for p in pre_loaded["source_datasets"] if p.startswith("extended")]
|
218 |
+
extended_sources = leftcol.multiselect(
|
219 |
+
"Which other datasets does this one use data from?",
|
220 |
+
options=all_dataset_ids + ["other"],
|
221 |
+
default=pre_select_ext_b,
|
222 |
)
|
223 |
+
if "other" in extended_sources:
|
224 |
+
other_extended_sources = st.text_input(
|
225 |
+
"You selected 'other' dataset. Please enter a short hyphen-separated description:",
|
226 |
+
value="my-dataset",
|
|
|
|
|
|
|
227 |
)
|
228 |
+
st.write(f"Registering other-{other_extended_sources} dataset")
|
229 |
+
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
|
230 |
+
source_datasets += [f"extended|{src}" for src in extended_sources]
|
231 |
+
size_category = leftcol.selectbox(
|
232 |
+
"What is the size category of the dataset?",
|
233 |
+
options=["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"],
|
234 |
+
index=["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"].index(
|
235 |
+
(pre_loaded.get("size_categories") or ["unknown"])[0]
|
236 |
+
),
|
|
|
|
|
|
|
|
|
237 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
+
|
240 |
+
########################
|
241 |
+
## Show results
|
242 |
+
########################
|
243 |
+
rightcol.markdown(
|
244 |
+
f"""
|
245 |
+
### Finalized tag set
|
246 |
+
```yaml
|
247 |
+
{yaml.dump({
|
248 |
"task_categories": task_categories,
|
249 |
"task_ids": task_specifics,
|
250 |
"multilinguality": multilinguality,
|
|
|
252 |
"language_creators": language_creators,
|
253 |
"annotations_creators": annotations_creators,
|
254 |
"source_datasets": source_datasets,
|
255 |
+
"size_categories": size_category,
|
256 |
"licenses": licenses,
|
257 |
+
})}
|
258 |
+
```
|
259 |
+
"""
|
260 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|