Spaces:
Runtime error
Runtime error
File size: 17,370 Bytes
0add2d4 fc95975 0add2d4 6303415 4bbaeac 693f997 0add2d4 4bbaeac 0add2d4 ffdfff7 fc95975 d1e3e7b f622ed0 0add2d4 611e98e 0add2d4 6303415 0add2d4 6303415 611e98e 693f997 611e98e 6303415 611e98e 6303415 611e98e 693f997 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 693f997 0add2d4 693f997 0add2d4 693f997 0add2d4 14574d7 ffdfff7 0add2d4 ffdfff7 0add2d4 6303415 0add2d4 ffdfff7 0add2d4 6303415 693f997 0add2d4 6303415 0add2d4 14574d7 ffdfff7 6303415 0add2d4 6303415 0add2d4 14574d7 ffdfff7 693f997 22701ae 693f997 22701ae 693f997 0add2d4 6303415 0add2d4 6303415 0add2d4 14574d7 ffdfff7 0add2d4 6303415 0add2d4 6303415 0add2d4 14574d7 ffdfff7 0add2d4 6303415 0add2d4 6303415 0add2d4 14574d7 0add2d4 6303415 0add2d4 6303415 0add2d4 14574d7 0add2d4 6303415 693f997 0add2d4 6303415 0add2d4 14574d7 0add2d4 693f997 0add2d4 14574d7 0add2d4 14574d7 611e98e 14574d7 f924b14 611e98e 14574d7 611e98e 14574d7 693f997 14574d7 611e98e 14574d7 611e98e 14574d7 611e98e 14574d7 611e98e 14574d7 611e98e 14574d7 a446a8b 0add2d4 611e98e a446a8b 611e98e a446a8b 611e98e 0add2d4 611e98e a446a8b 611e98e a446a8b 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 d1e3e7b 0add2d4 6303415 0add2d4 3fd19c1 d1e3e7b 0add2d4 ffdfff7 693f997 07c617e 0add2d4 ffdfff7 0add2d4 611e98e 0add2d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# Run with: streamlit run visualization.py
import streamlit as st
import os
import base64
import json
import pandas as pd
pd.options.mode.chained_assignment = None
import numpy as np
import matplotlib.pyplot as plt
from filtering import Filtering
class Visualization:
def __init__(
self,
path_instructions,
path_data,
lang,
num_docs,
num_docs_for_words,
max_len_text_display,
):
self.path_instructions = path_instructions
self.path_data = path_data
self.lang = lang
self.num_docs = num_docs
self.num_docs_for_words = num_docs_for_words
self.max_len_text_display = max_len_text_display
def preamble(self):
st.markdown(
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail."
)
def get_binary_file_downloader_html(bin_file, file_label="File"):
with open(bin_file, "rb") as f:
data = f.read()
bin_str = base64.b64encode(data).decode()
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
return href
st.markdown(
get_binary_file_downloader_html(
self.path_instructions,
"Download the explanation of the filtering pipeline as pdf",
),
unsafe_allow_html=True,
)
def open_data(self):
with open(self.path_data) as json_file:
data = json.load(json_file)
self.num_docs = min(self.num_docs, len(data))
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
if "words" in data[0]:
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
words = [word for doc in words for word in doc]
self.words = pd.DataFrame(words)
else:
self.words = None
docs = data[: self.num_docs]
for doc in docs:
if not (self.words is None):
del doc["words"]
if len(doc["text"]) > self.max_len_text_display:
doc["text"] = (
doc["text"][: self.max_len_text_display]
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
)
self.docs_checkpoint = pd.DataFrame(docs)
self.docs = self.docs_checkpoint
def set_title(self):
st.title(f"{self.num_docs} {self.lang} documents with their stats.")
def filtering_of_docs(self):
st.sidebar.subheader("Parameters of the filtering on documents")
def set_sliders():
columns = list(self.docs)
keys = []
conds = {}
def get_cond(key, cutoff, max_cutoff):
if max_cutoff:
return self.docs[key] <= cutoff
return self.docs[key] >= cutoff
def print_discared_by_cond(cond):
st.sidebar.caption(
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
)
st.sidebar.caption("---------")
if "number_words" in columns:
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
max_nb_words = int(np.max(self.docs["number_words"])) + 1
cutoff_min_number_words = st.sidebar.slider(
cutoff_def, 0, min(max_nb_words, 500), 0
)
new_key = ("number_words", cutoff_min_number_words, False)
keys.append(new_key)
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond_1)
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
cutoff_max_number_words = st.sidebar.slider(
cutoff_def, 0, max_nb_words, max_nb_words
)
new_key = ("number_words", cutoff_max_number_words, True)
keys.append(new_key)
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond_2)
conds["number_words"] = [cond_1, cond_2]
if "repetitions_ratio" in columns:
val_repetitions_lengths = list(
self.docs["repetitions_ratio"].iloc[0].keys()
)
default_index = (
val_repetitions_lengths.index("10")
if "10" in val_repetitions_lengths
else 0
)
label_selectbox = (
"Length of the repetitions (that will determine the repetitions ratio)."
)
repetitions_length = st.sidebar.selectbox(
label=label_selectbox,
options=val_repetitions_lengths,
index=default_index,
)
st.sidebar.caption(
"Choosing a higher or lower number does not mean that the filtering "
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
"tends to associate a high repetitions ratio to very long documents (like book chapters), but with "
"few or no repetitions, simply because their length gives them more diversity, and we do "
"not want to discard such documents."
)
self.docs = self.docs_checkpoint
for i in range(len(self.docs["repetitions_ratio"])):
self.docs["repetitions_ratio"].iloc[i] = self.docs["repetitions_ratio"].iloc[i][repetitions_length]
cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed."
cutoff_repetitions_ratio = st.sidebar.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"repetitions_ratio",
cutoff_repetitions_ratio,
True,
)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond)
conds["repetitions_ratio"] = [cond]
if "special_characters_ratio" in columns:
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
cutoff_special_characters_ratio = st.sidebar.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"special_characters_ratio",
cutoff_special_characters_ratio,
True,
)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond)
conds["special_characters_ratio"] = [cond]
if "stopwords_ratio" in columns:
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
cutoff_stopwords_ratio = st.sidebar.slider(
cutoff_def, 0.0, 1.0, 0.0, step=0.01
)
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond)
conds["stopwords_ratio"] = [cond]
if "badwords_ratio" in columns:
cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed."
cutoff_badwords_ratio = st.sidebar.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond)
conds["badwords_ratio"] = [cond]
if "lang_id_score" in columns:
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
cutoff_lang_id_score = st.sidebar.slider(
cutoff_def, 0.0, 1.0, 0.0, step=0.01
)
new_key = ("lang_id_score", cutoff_lang_id_score, False)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond)
conds["lang_id_score"] = [cond]
if "perplexity_score" in columns:
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
cutoff_perplexity_score = st.sidebar.slider(
cutoff_def, 0, max_pp, max_pp
)
new_key = ("perplexity_score", cutoff_perplexity_score, True)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
print_discared_by_cond(cond)
conds["perplexity_score"] = [cond]
return keys, conds
self.keys, conds = set_sliders()
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
all_conds = np.all(all_conds, axis=0)
st.header("Filtering on documents")
def display_dataset(cond, description):
displayed_docs = self.docs.loc[cond]
st.subheader(
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(displayed_docs)
display_dataset(np.invert(all_conds), "Discarded documents")
# st.subheader("Display discarded documents by filter")
display_discarded_documents_by_filter = st.checkbox(
"Display discarded documents by filter"
)
if display_discarded_documents_by_filter:
columns = list(self.docs)
if "number_words" in columns:
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
display_dataset(
cond_filter,
"Discarded documents for the filter on the number of words",
)
if "repetitions_ratio" in columns:
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
display_dataset(
cond_filter,
"Discarded documents for the filter on the repetitions ratio",
)
if "special_characters_ratio" in columns:
cond_filter = np.invert(
np.all(conds["special_characters_ratio"], axis=0)
)
display_dataset(
cond_filter,
"Discarded documents for the filter on the special characters ratio",
)
if "stopwords_ratio" in columns:
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
display_dataset(
cond_filter,
"Discarded documents for the filter on the stop words ratio",
)
if "badwords_ratio" in columns:
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
display_dataset(
cond_filter,
"Discarded documents for the filter on the bad words ratio",
)
if "lang_id_score" in columns:
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
display_dataset(
cond_filter,
"Discarded documents for the filter on the language identification confidence score",
)
if "perplexity_score" in columns:
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
display_dataset(
cond_filter,
"Discarded documents for the filter on the perplexity score",
)
display_dataset(all_conds, "Retained documents")
def filtering_of_words(self):
if not (self.words is None):
st.sidebar.subheader("Parameter of the filtering on words")
cutoff_def = "If the length of a word is higher than this number, the word is removed."
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
incorrect_substrings = st.sidebar.checkbox(
"Remove words with incorrect substrings."
)
cond_words = self.words["len_word"] <= cutoff_word
if incorrect_substrings:
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
st.header("Filtering on words")
st.markdown(
f"Since the number of words is way larger than the number of documents, "
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
)
discarded_words = self.words.loc[np.invert(cond_words)]
st.subheader(
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(discarded_words)
retained_words = self.words.loc[cond_words]
st.subheader(
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(retained_words)
def plot_distributions_filtering_parameters(self):
st.header("Distributions of the filtering parameters")
display_distributions = st.checkbox("Display distributions")
if display_distributions:
def plot_hist(dataframe, key, num_bins=50):
st.subheader(" ".join(key.split("_")))
hist_values = dataframe[key].values
max_range = np.max(hist_values)
hist_values = np.histogram(
hist_values, bins=num_bins, range=(0, max_range)
)[0]
st.bar_chart(hist_values)
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
for key in list({el[0]: None for el in self.keys}):
plot_hist(self.docs, key)
if not (self.words is None):
plot_hist(self.words, "len_word")
def plot_zipf_law(self):
if not (self.words is None):
st.header("Zipf's Law")
display_zipf_law = st.checkbox("Display Zipf's Law")
if display_zipf_law:
freq_words = {}
for _, row in self.words.iterrows():
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
freq_words = np.array(list(freq_words.values()))
freq_words = -np.sort(-freq_words)
fig, ax = plt.subplots()
ax.loglog(freq_words)
ax.set_title("Zipf's Law")
ax.set_xlabel("$i$-th most frequent word")
ax.set_ylabel("frequency in the documents")
st.pyplot(fig)
def check_personal_doc(self):
pass
def download_data(self):
st.header("Download data")
with open(self.path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
def visualization(self):
self.preamble()
self.open_data()
self.set_title()
self.filtering_of_docs()
self.filtering_of_words()
self.plot_distributions_filtering_parameters()
#self.plot_zipf_law()
self.check_personal_doc()
self.download_data()
path_instructions = "./explanation_filtering_pipeline.pdf"
path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
max_len_text_display = 10000
visualization = Visualization(
path_instructions,
path_data,
lang,
num_docs,
num_docs_for_words,
max_len_text_display,
)
visualization.visualization()
|