Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import sys | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from huggingface_hub import hf_hub_download | |
sys.path.insert(0, "face_detection") | |
sys.path.insert(0, "face_parsing") | |
sys.path.insert(0, "roi_tanh_warping") | |
from ibug.face_detection import RetinaFacePredictor | |
from ibug.face_parsing.parser import WEIGHT, FaceParser | |
from ibug.face_parsing.utils import label_colormap | |
DESCRIPTION = "# [hhj1897/face_parsing](https://github.com/hhj1897/face_parsing)" | |
def is_lfs_pointer_file(path: pathlib.Path) -> bool: | |
try: | |
with open(path, "r") as f: | |
# Git LFS pointer files usually start with version line | |
version_line = f.readline() | |
if version_line.startswith("version https://git-lfs.github.com/spec/"): | |
# Check for the presence of oid and size lines | |
oid_line = f.readline() | |
size_line = f.readline() | |
if oid_line.startswith("oid sha256:") and size_line.startswith("size "): | |
return True | |
except Exception as e: | |
print(f"Error reading file {path}: {e}") | |
return False | |
lfs_model_paths = sorted(pathlib.Path("face_parsing").rglob("*.torch")) | |
for lfs_model_path in lfs_model_paths: | |
if is_lfs_pointer_file(lfs_model_path): | |
os.remove(lfs_model_path) | |
out_path = hf_hub_download( | |
"public-data/ibug-face-parsing", | |
filename=lfs_model_path.name, | |
repo_type="model", | |
subfolder=lfs_model_path.parts[-3], | |
) | |
os.symlink(out_path, lfs_model_path) | |
def load_model(model_name: str, device: torch.device) -> FaceParser: | |
encoder, decoder, num_classes = model_name.split("-") | |
num_classes = int(num_classes) # type: ignore | |
model = FaceParser(device=device, encoder=encoder, decoder=decoder, num_classes=num_classes) | |
model.num_classes = num_classes | |
return model | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
detector = RetinaFacePredictor(threshold=0.8, device="cpu", model=RetinaFacePredictor.get_model("mobilenet0.25")) | |
detector.device = device | |
detector.net.to(device) | |
model_names = list(WEIGHT.keys()) | |
models = {name: load_model(name, device=device) for name in model_names} | |
def predict(image: np.ndarray, model_name: str, max_num_faces: int) -> np.ndarray: | |
model = models[model_name] | |
colormap = label_colormap(model.num_classes) | |
# RGB -> BGR | |
image = image[:, :, ::-1] | |
faces = detector(image, rgb=False) | |
if len(faces) == 0: | |
raise RuntimeError("No face was found.") | |
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces][::-1] | |
masks = model.predict_img(image, faces, rgb=False) | |
mask_image = np.zeros_like(image) | |
for mask in masks: | |
temp = colormap[mask] | |
mask_image[temp > 0] = temp[temp > 0] | |
res = image.astype(float) * 0.5 + mask_image[:, :, ::-1] * 0.5 | |
res = np.clip(np.round(res), 0, 255).astype(np.uint8) | |
return res[:, :, ::-1] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="numpy", label="Input") | |
model_name = gr.Radio(choices=model_names, type="value", value=model_names[1], label="Model") | |
max_num_faces = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Max Number of Faces") | |
run_button = gr.Button() | |
with gr.Column(): | |
result = gr.Image(label="Output") | |
gr.Examples( | |
examples=[[path.as_posix(), model_names[1], 10] for path in pathlib.Path("images").rglob("*.jpg")], | |
inputs=[image, model_name, max_num_faces], | |
outputs=result, | |
fn=predict, | |
) | |
run_button.click( | |
fn=predict, | |
inputs=[image, model_name, max_num_faces], | |
outputs=result, | |
api_name="predict", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |