hysts HF staff commited on
Commit
ff2f092
·
1 Parent(s): addb396
.gitattributes CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ *.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore DELETED
@@ -1 +0,0 @@
1
- images
 
 
.pre-commit-config.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.5.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/myint/docformatter
17
+ rev: v1.7.5
18
+ hooks:
19
+ - id: docformatter
20
+ args: ["--in-place"]
21
+ - repo: https://github.com/pycqa/isort
22
+ rev: 5.13.2
23
+ hooks:
24
+ - id: isort
25
+ args: ["--profile", "black"]
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v1.8.0
28
+ hooks:
29
+ - id: mypy
30
+ args: ["--ignore-missing-imports"]
31
+ additional_dependencies:
32
+ [
33
+ "types-python-slugify",
34
+ "types-requests",
35
+ "types-PyYAML",
36
+ "types-pytz",
37
+ ]
38
+ - repo: https://github.com/psf/black
39
+ rev: 24.2.0
40
+ hooks:
41
+ - id: black
42
+ language_version: python3.10
43
+ args: ["--line-length", "119"]
44
+ - repo: https://github.com/kynan/nbstripout
45
+ rev: 0.7.1
46
+ hooks:
47
+ - id: nbstripout
48
+ args:
49
+ [
50
+ "--extra-keys",
51
+ "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
52
+ ]
53
+ - repo: https://github.com/nbQA-dev/nbQA
54
+ rev: 1.7.1
55
+ hooks:
56
+ - id: nbqa-black
57
+ - id: nbqa-pyupgrade
58
+ args: ["--py37-plus"]
59
+ - id: nbqa-isort
60
+ args: ["--float-to-top"]
.vscode/settings.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "editor.formatOnSave": true,
3
+ "files.insertFinalNewline": false,
4
+ "[python]": {
5
+ "editor.defaultFormatter": "ms-python.black-formatter",
6
+ "editor.formatOnType": true,
7
+ "editor.codeActionsOnSave": {
8
+ "source.organizeImports": "explicit"
9
+ }
10
+ },
11
+ "[jupyter]": {
12
+ "files.insertFinalNewline": false
13
+ },
14
+ "black-formatter.args": [
15
+ "--line-length=119"
16
+ ],
17
+ "isort.args": ["--profile", "black"],
18
+ "flake8.args": [
19
+ "--max-line-length=119"
20
+ ],
21
+ "ruff.lint.args": [
22
+ "--line-length=119"
23
+ ],
24
+ "notebook.output.scrolling": true,
25
+ "notebook.formatOnCellExecution": true,
26
+ "notebook.formatOnSave.enabled": true,
27
+ "notebook.codeActionsOnSave": {
28
+ "source.organizeImports": "explicit"
29
+ }
30
+ }
README.md CHANGED
@@ -4,9 +4,10 @@ emoji: 📈
4
  colorFrom: green
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 3.0.5
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
4
  colorFrom: green
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 4.19.2
8
  app_file: app.py
9
  pinned: false
10
+ short_description: face parsing
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py CHANGED
@@ -2,85 +2,42 @@
2
 
3
  from __future__ import annotations
4
 
5
- import argparse
6
- import functools
7
  import os
8
  import pathlib
9
  import sys
10
- import tarfile
11
 
12
  import gradio as gr
13
- import huggingface_hub
14
  import numpy as np
15
  import torch
16
 
17
- sys.path.insert(0, 'face_detection')
18
- sys.path.insert(0, 'face_parsing')
19
- sys.path.insert(0, 'roi_tanh_warping')
20
 
21
  from ibug.face_detection import RetinaFacePredictor
22
  from ibug.face_parsing.parser import WEIGHT, FaceParser
23
  from ibug.face_parsing.utils import label_colormap
24
 
25
- TITLE = 'hhj1897/face_parsing'
26
- DESCRIPTION = 'This is an unofficial demo for https://github.com/hhj1897/face_parsing.'
27
- ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.ibug-face_parsing" alt="visitor badge"/></center>'
28
-
29
- TOKEN = os.environ['TOKEN']
30
-
31
-
32
- def parse_args() -> argparse.Namespace:
33
- parser = argparse.ArgumentParser()
34
- parser.add_argument('--device', type=str, default='cpu')
35
- parser.add_argument('--theme', type=str)
36
- parser.add_argument('--live', action='store_true')
37
- parser.add_argument('--share', action='store_true')
38
- parser.add_argument('--port', type=int)
39
- parser.add_argument('--disable-queue',
40
- dest='enable_queue',
41
- action='store_false')
42
- parser.add_argument('--allow-flagging', type=str, default='never')
43
- return parser.parse_args()
44
-
45
-
46
- def load_sample_images() -> list[pathlib.Path]:
47
- image_dir = pathlib.Path('images')
48
- if not image_dir.exists():
49
- image_dir.mkdir()
50
- dataset_repo = 'hysts/input-images'
51
- filenames = ['000.tar', '001.tar']
52
- for name in filenames:
53
- path = huggingface_hub.hf_hub_download(dataset_repo,
54
- name,
55
- repo_type='dataset',
56
- use_auth_token=TOKEN)
57
- with tarfile.open(path) as f:
58
- f.extractall(image_dir.as_posix())
59
- return sorted(image_dir.rglob('*.jpg'))
60
-
61
-
62
- def load_detector(device: torch.device) -> RetinaFacePredictor:
63
- model = RetinaFacePredictor(
64
- threshold=0.8,
65
- device=device,
66
- model=RetinaFacePredictor.get_model('mobilenet0.25'))
67
- return model
68
 
69
 
70
  def load_model(model_name: str, device: torch.device) -> FaceParser:
71
- encoder, decoder, num_classes = model_name.split('-')
72
- num_classes = int(num_classes)
73
- model = FaceParser(device=device,
74
- encoder=encoder,
75
- decoder=decoder,
76
- num_classes=num_classes)
77
  model.num_classes = num_classes
78
  return model
79
 
80
 
81
- def predict(image: np.ndarray, model_name: str, max_num_faces: int,
82
- detector: RetinaFacePredictor,
83
- models: dict[str, FaceParser]) -> np.ndarray:
 
 
 
 
 
 
84
  model = models[model_name]
85
  colormap = label_colormap(model.num_classes)
86
 
@@ -89,7 +46,7 @@ def predict(image: np.ndarray, model_name: str, max_num_faces: int,
89
 
90
  faces = detector(image, rgb=False)
91
  if len(faces) == 0:
92
- raise RuntimeError('No face was found.')
93
  faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces][::-1]
94
  masks = model.predict_img(image, faces, rgb=False)
95
 
@@ -103,46 +60,30 @@ def predict(image: np.ndarray, model_name: str, max_num_faces: int,
103
  return res[:, :, ::-1]
104
 
105
 
106
- def main():
107
- args = parse_args()
108
- device = torch.device(args.device)
109
-
110
- detector = load_detector(device)
111
-
112
- model_names = list(WEIGHT.keys())
113
- models = {name: load_model(name, device=device) for name in model_names}
114
-
115
- func = functools.partial(predict, detector=detector, models=models)
116
- func = functools.update_wrapper(func, predict)
117
-
118
- image_paths = load_sample_images()
119
- examples = [[path.as_posix(), model_names[1], 10] for path in image_paths]
120
-
121
- gr.Interface(
122
- func,
123
- [
124
- gr.inputs.Image(type='numpy', label='Input'),
125
- gr.inputs.Radio(model_names,
126
- type='value',
127
- default=model_names[1],
128
- label='Model'),
129
- gr.inputs.Slider(
130
- 1, 20, step=1, default=10, label='Max Number of Faces'),
131
- ],
132
- gr.outputs.Image(type='numpy', label='Output'),
133
- examples=examples,
134
- title=TITLE,
135
- description=DESCRIPTION,
136
- article=ARTICLE,
137
- theme=args.theme,
138
- allow_flagging=args.allow_flagging,
139
- live=args.live,
140
- ).launch(
141
- enable_queue=args.enable_queue,
142
- server_port=args.port,
143
- share=args.share,
144
  )
145
 
 
 
 
 
 
 
146
 
147
- if __name__ == '__main__':
148
- main()
 
2
 
3
  from __future__ import annotations
4
 
 
 
5
  import os
6
  import pathlib
7
  import sys
 
8
 
9
  import gradio as gr
 
10
  import numpy as np
11
  import torch
12
 
13
+ sys.path.insert(0, "face_detection")
14
+ sys.path.insert(0, "face_parsing")
15
+ sys.path.insert(0, "roi_tanh_warping")
16
 
17
  from ibug.face_detection import RetinaFacePredictor
18
  from ibug.face_parsing.parser import WEIGHT, FaceParser
19
  from ibug.face_parsing.utils import label_colormap
20
 
21
+ DESCRIPTION = "# [hhj1897/face_parsing](https://github.com/hhj1897/face_parsing)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
  def load_model(model_name: str, device: torch.device) -> FaceParser:
25
+ encoder, decoder, num_classes = model_name.split("-")
26
+ num_classes = int(num_classes) # type: ignore
27
+ model = FaceParser(device=device, encoder=encoder, decoder=decoder, num_classes=num_classes)
 
 
 
28
  model.num_classes = num_classes
29
  return model
30
 
31
 
32
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
33
+
34
+ detector = RetinaFacePredictor(threshold=0.8, device=device, model=RetinaFacePredictor.get_model("mobilenet0.25"))
35
+
36
+ model_names = list(WEIGHT.keys())
37
+ models = {name: load_model(name, device=device) for name in model_names}
38
+
39
+
40
+ def predict(image: np.ndarray, model_name: str, max_num_faces: int) -> np.ndarray:
41
  model = models[model_name]
42
  colormap = label_colormap(model.num_classes)
43
 
 
46
 
47
  faces = detector(image, rgb=False)
48
  if len(faces) == 0:
49
+ raise RuntimeError("No face was found.")
50
  faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces][::-1]
51
  masks = model.predict_img(image, faces, rgb=False)
52
 
 
60
  return res[:, :, ::-1]
61
 
62
 
63
+ with gr.Blocks(css="style.css") as demo:
64
+ gr.Markdown(DESCRIPTION)
65
+ with gr.Row():
66
+ with gr.Column():
67
+ image = gr.Image(type="numpy", label="Input")
68
+ model_name = gr.Radio(choices=model_names, type="value", value=model_names[1], label="Model")
69
+ max_num_faces = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Max Number of Faces")
70
+ run_button = gr.Button()
71
+ with gr.Column():
72
+ result = gr.Image(label="Output")
73
+ gr.Examples(
74
+ examples=[[path.as_posix(), model_names[1], 10] for path in pathlib.Path("images").rglob("*.jpg")],
75
+ inputs=[image, model_name, max_num_faces],
76
+ outputs=result,
77
+ fn=predict,
78
+ cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  )
80
 
81
+ run_button.click(
82
+ fn=predict,
83
+ inputs=[image, model_name, max_num_faces],
84
+ outputs=result,
85
+ api_name="predict",
86
+ )
87
 
88
+ if __name__ == "__main__":
89
+ demo.queue(max_size=20).launch()
images/95UF6LXe-Lo.jpg ADDED

Git LFS Details

  • SHA256: 9ba751a6519822fa683e062ee3a383e748f15b41d4ca87d14c4fa73f9beed845
  • Pointer size: 131 Bytes
  • Size of remote file: 503 kB
images/ILip77SbmOE.jpg ADDED

Git LFS Details

  • SHA256: 3eed82923bc76a90f067415f148d56239fdfa4a1aca9eef1d459bc6050c9dde8
  • Pointer size: 131 Bytes
  • Size of remote file: 939 kB
images/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ These images are freely-usable ones from [Unsplash](https://unsplash.com/) and public domain:
2
+
3
+ - https://unsplash.com/photos/rDEOVtE7vOs
4
+ - https://unsplash.com/photos/et_78QkMMQs
5
+ - https://unsplash.com/photos/ILip77SbmOE
6
+ - https://unsplash.com/photos/95UF6LXe-Lo
7
+ - https://www.pexels.com/photo/children-with-her-students-holding-different-color-bells-8535230/
images/et_78QkMMQs.jpg ADDED

Git LFS Details

  • SHA256: c63a2e9de5eda3cb28012cfc8e4ba9384daeda8cca7a8989ad90b21a1293cc6f
  • Pointer size: 131 Bytes
  • Size of remote file: 371 kB
images/pexels-ksenia-chernaya-8535230.jpg ADDED

Git LFS Details

  • SHA256: 79b6b7ee58972731ed7d83e45a13c18544690df9b384f36327b627714c2f5cab
  • Pointer size: 131 Bytes
  • Size of remote file: 409 kB
images/rDEOVtE7vOs.jpg ADDED

Git LFS Details

  • SHA256: b136bf195fef5599f277a563f0eef79af5301d9352d4ebf82bd7a0a061b7bdc0
  • Pointer size: 131 Bytes
  • Size of remote file: 155 kB
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- numpy==1.22.3
2
- opencv-python-headless==4.5.5.64
3
- torch==1.11.0
4
- torchvision==0.12.0
 
1
+ numpy==1.26.4
2
+ opencv-python-headless==4.9.0.80
3
+ torch==2.0.1
4
+ torchvision==0.15.2
style.css ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ h1 {
2
+ text-align: center;
3
+ display: block;
4
+ }
5
+
6
+ #duplicate-button {
7
+ margin: auto;
8
+ color: #fff;
9
+ background: #1565c0;
10
+ border-radius: 100vh;
11
+ }