Spaces:
Runtime error
Runtime error
File size: 18,764 Bytes
a17aefb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from typing import Mapping
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json",
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json",
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json",
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json",
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json",
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json",
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json",
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class BertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BertModel`] or a
[`TFBertModel`]. It is used to instantiate a BERT model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the BERT [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertModel`] or
[`TFBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
`"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or
[`TFBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`,
`"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on
`"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to
*Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import BertModel, BertConfig
>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()
>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = BertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
token_keep_rate=1,
token_keep_strategy='cls_attn',
token_drop_loc=[9],
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
self.token_keep_rate = token_keep_rate
self.token_keep_strategy = token_keep_strategy
self.token_drop_loc = token_drop_loc
class BertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("token_type_ids", {0: "batch", 1: "sequence"}),
]
)
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/beit-base-patch16-224-in22k": "https://huggingface.co/microsoft/beit-base-patch16-224-in22k/resolve/main/config.json",
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class BeitConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to
instantiate an BEiT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BEiT
[microsoft/beit-base-patch16-224-in22k](https://huggingface.co/microsoft/beit-base-patch16-224-in22k)
architecture.
Args:
vocab_size (`int`, *optional*, defaults to 8092):
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
pre-training.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
`"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to `224`):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to `16`):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to `3`):
The number of input channels.
use_mask_token (`bool`, *optional*, defaults to `False`):
Whether to use a mask token for masked image modeling.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to use BERT-style absolute position embeddings.
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use T5-style relative position embeddings in the self-attention layers.
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_mean_pooling (`bool`, *optional*, defaults to `True`):
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
CLS token, before applying the classification head.
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
Indices of the feature maps to use for semantic segmentation.
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
Whether to use an auxiliary head during training.
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
Weight of the cross-entropy loss of the auxiliary head.
auxiliary_channels (`int`, *optional*, defaults to 256):
Number of channels to use in the auxiliary head.
auxiliary_num_convs (`int`, *optional*, defaults to 1):
Number of convolutional layers to use in the auxiliary head.
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
Example:
```python
>>> from transformers import BeitModel, BeitConfig
>>> # Initializing a BEiT beit-base-patch16-224-in22k style configuration
>>> configuration = BeitConfig()
>>> # Initializing a model from the beit-base-patch16-224-in22k style configuration
>>> model = BeitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "beit"
def __init__(
self,
vocab_size=8192,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
is_encoder_decoder=False,
image_size=224,
patch_size=16,
num_channels=3,
use_mask_token=False,
use_absolute_position_embeddings=False,
use_relative_position_bias=False,
use_shared_relative_position_bias=False,
layer_scale_init_value=0.1,
drop_path_rate=0.1,
use_mean_pooling=True,
out_indices=[3, 5, 7, 11],
pool_scales=[1, 2, 3, 6],
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
auxiliary_channels=256,
auxiliary_num_convs=1,
auxiliary_concat_input=False,
semantic_loss_ignore_index=255,
token_keep_rate=1,
token_keep_strategy='cls_attn',
token_drop_loc=[3, 6, 9],
sparse_random_attn=None,
sparse_local_attn=1,
attn_block_size=1,
num_cls_tokens=1,
token_3d_order='none',
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.use_mask_token = use_mask_token
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_bias = use_relative_position_bias
self.use_shared_relative_position_bias = use_shared_relative_position_bias
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.use_mean_pooling = use_mean_pooling
# decode head attributes (semantic segmentation)
self.out_indices = out_indices
self.pool_scales = pool_scales
# auxiliary head attributes (semantic segmentation)
self.use_auxiliary_head = use_auxiliary_head
self.auxiliary_loss_weight = auxiliary_loss_weight
self.auxiliary_channels = auxiliary_channels
self.auxiliary_num_convs = auxiliary_num_convs
self.auxiliary_concat_input = auxiliary_concat_input
self.semantic_loss_ignore_index = semantic_loss_ignore_index
# node sparsification
self.token_keep_rate = token_keep_rate
self.token_keep_strategy = token_keep_strategy
self.token_drop_loc = token_drop_loc
# edge sparsification
self.sparse_random_attn = sparse_random_attn
self.sparse_local_attn = sparse_local_attn
self.attn_block_size = attn_block_size
self.num_cls_tokens = num_cls_tokens
# token order
self.token_3d_order = token_3d_order
|