File size: 67,146 Bytes
a17aefb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
# coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BEiT model. """


import collections.abc
import math
import numpy as np
from dataclasses import dataclass
from typing import Optional, Tuple
import zCurve
import hilbert

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from einops import rearrange, repeat

from transformers.activations import ACT2FN
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from svitt.sparse_config import BeitConfig


_CONFIG_FOR_DOC = "BeitConfig"
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224"

BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "microsoft/beit-base-patch16-224",
    # See all BEiT models at https://huggingface.co/models?filter=beit
]


@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
    """
    Class for outputs of :class:`~transformers.BeitModel`.

    Args:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
            Average of the last layer hidden states of the patch tokens (excluding the `[CLS]` token) if
            `config.use_mean_pooling` is set to True. If set to False, then the final hidden state of the `[CLS]` token
            will be returned.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """
    token_idx: Optional[Tuple[torch.LongTensor]] = None


@dataclass
class BeitModelOutput(BaseModelOutput):
    token_idx: Optional[Tuple[torch.LongTensor]] = None


# Inspired by
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
# From PyTorch internals
def to_2tuple(x):
    if isinstance(x, collections.abc.Iterable):
        return x
    return (x, x)


# Based on https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
    """
    Construct the CLS token, position and patch embeddings. Optionally, also the mask token.

    """

    def __init__(self, config):
        super().__init__()

        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        if config.use_mask_token:
            self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        else:
            self.mask_token = None
        self.patch_embeddings = PatchEmbeddings(
            image_size=config.image_size,
            patch_size=config.patch_size,
            num_channels=config.num_channels,
            embed_dim=config.hidden_size,
        )
        num_patches = self.patch_embeddings.num_patches
        if config.use_absolute_position_embeddings:
            self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
        else:
            self.position_embeddings = None
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, pixel_values, bool_masked_pos=None):

        if pixel_values.ndim == 5:  # video input=
            embeddings = self.patch_embeddings(pixel_values.flatten(0, 1))
            embeddings = rearrange(embeddings, '(b m) n d -> b (m n) d', m=pixel_values.shape[1])
        else:  # image input
            embeddings = self.patch_embeddings(pixel_values)
            
        batch_size, seq_len, _ = embeddings.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        if bool_masked_pos is not None:
            mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
            # replace the masked visual tokens by mask_tokens
            w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1 - w) + mask_tokens * w

        embeddings = torch.cat((cls_tokens, embeddings), dim=1)
        if self.position_embeddings is not None:
            embeddings = embeddings + self.position_embeddings
        embeddings = self.dropout(embeddings)

        return embeddings


# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class PatchEmbeddings(nn.Module):
    """
    Image to Patch Embedding.
    """

    def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768):
        super().__init__()
        image_size = to_2tuple(image_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.patch_shape = patch_shape

        self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values):
        batch_size, num_channels, height, width = pixel_values.shape
        # FIXME look at relaxing size constraints
        if height != self.image_size[0] or width != self.image_size[1]:
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
            )
        x = self.projection(pixel_values).flatten(2).transpose(1, 2)

        return x


class BeitSelfAttention(nn.Module):
    def __init__(self, config, window_size=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        # sparse params
        self.random_attn = config.sparse_random_attn
        self.local_attn = config.sparse_local_attn
        self.block_size = config.attn_block_size
        self.num_cls_tokens = config.num_cls_tokens
        if self.local_attn is not None and self.random_attn is not None:
            self.num_kv_blocks = self.local_attn + self.random_attn

        if window_size:
            self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
        else:
            self.relative_position_bias = None
    
    def split_heads(self, x):
        return rearrange(x, 'b n (h d) -> b h n d', h=self.num_attention_heads)
    
    def join_heads(self, x):
        return rearrange(x, 'b h n d -> b n (h d)')
    
    def blockify(self, x):
        assert x.dim() == 4, f"Unsupported input shape {x.shape}"
        seq_len = x.shape[2]
        if seq_len % self.block_size > 0:  # seq_len not divisible by block_size, zero pad
            pad_len = self.block_size - seq_len % self.block_size
            x = nn.functional.pad(x, (0, 0, 0, pad_len))
        else:
            pad_len = 0
        x = rearrange(x, 'b h (m n) d -> b h m n d', n=self.block_size)
        return x, pad_len
    
    def dense_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, k_idx=None):
        # q, k, v: (bsz, num_heads, seq_len, dims)
        assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
        sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
        sim = sim / math.sqrt(self.attention_head_size)

        # Add relative position bias if present.
        if self.relative_position_bias is not None:
            if q_idx is not None and q_idx.ndim == 2:
                assert k_idx is not None and len(q_idx) == len(k_idx)
                bias = torch.stack([
                    self.relative_position_bias(from_idx=q_idx_, to_idx=k_idx_)
                    for q_idx_, k_idx_ in zip(q_idx, k_idx)
                ])
            else:
                bias = self.relative_position_bias(from_idx=q_idx, to_idx=k_idx).unsqueeze(0)
            sim = sim + bias

        # Add shared relative position bias if provided.
        if relative_position_bias is not None:
            sim = sim + relative_position_bias

        # Normalize the attention scores to probabilities.
        attn = sim.softmax(dim=-1)
        attn = self.dropout(attn)
        if head_mask is not None:
            attn = attn * head_mask

        out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
        return out, attn
    
    def _sparse_attn_relative_position_bias(self, q_idx, pad_q, attn_idx, group_len):
        q_idx_blk = nn.functional.pad(q_idx, (0, pad_q)).view(-1, self.block_size)
        attn_idx_flt = rearrange(q_idx_blk[attn_idx], 'm n j -> m (n j)')  # (seq_len, num_kv_blocks * group_len)
        cls_idx = torch.arange(self.num_cls_tokens, device=q_idx.device)
        cls_idx = repeat(cls_idx, 'n -> m n', m=len(attn_idx_flt))
        attn_idx_flt = torch.cat((cls_idx, attn_idx_flt), dim=1)
        attn_idx_flt = repeat(attn_idx_flt, 'm n -> (m i) n', i=group_len)
        if pad_q > 0:
            attn_idx_flt = attn_idx_flt[:-pad_q]
        bias_flt = self.relative_position_bias(from_idx=q_idx, to_idx=attn_idx_flt)
        if pad_q > 0:
            bias_flt = nn.functional.pad(bias_flt, (0, 0, 0, pad_q))
        return rearrange(bias_flt, 'h (m i) n -> h m i n', i=group_len)  # num_heads, seq_len, group_len, (num_kv_blocks * group_len + num_cls_tokens)
    
    def sparse_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, mimic_full=False):
        assert self.local_attn == 0 or self.local_attn % 2 == 1, "Even local window size not supported"
        assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"

        
        if not mimic_full:
            cls_k, k = k[..., :self.num_cls_tokens, :], k[..., self.num_cls_tokens:, :]  # cls_k: (bsz, num_heads, num_cls_tokens, dims)
            cls_v, v = v[..., :self.num_cls_tokens, :], v[..., self.num_cls_tokens:, :]

        # pad token sequence to multiples of block_size
        if mimic_full:
            bsz, num_heads, seq_len, dims = q.shape
        else:
            q, pad_q = self.blockify(q)  # q: (bsz, num_heads, seq_len, group_len, dims)
            k, pad_k = self.blockify(k)
            v, pad_v = self.blockify(v)
            bsz, num_heads, seq_len, group_len, dims = q.shape

            # global attention
            cls_sim = torch.einsum('b h n i d, b h j d -> b h n i j', q, cls_k)  # (bsz, num_heads, seq_len, group_len, num_cls_tokens)

        if mimic_full:
            sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
            sim = sim / math.sqrt(self.attention_head_size)
            sim = sim + self.relative_position_bias(from_idx=q_idx).unsqueeze(0)
        
        else:
            # initialize empty sim matrix
            sim = torch.empty((bsz, num_heads, seq_len, self.num_kv_blocks, group_len, group_len), device=q.device)
            attn_idx = torch.zeros((seq_len, self.num_kv_blocks), dtype=torch.int64, device=q.device)

            # local window attention
            cnt = 0
            if self.local_attn > 0:
                num_rolls = self.local_attn // 2
                for r in range(-num_rolls, num_rolls + 1):
                    sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.roll(-r, dims=2))
                    attn_idx[:, cnt] = torch.arange(seq_len, device=q.device).roll(r)
                    cnt += 1
            
            # random attention
            if self.random_attn > 0:
                # generate random attention pattern
                rand = torch.rand((seq_len, seq_len), device=q.device)
                if self.local_attn > 0:
                    # avoid overlap with local attention
                    for r in range(-num_rolls, num_rolls + 1):
                        tgt_idx = list(i % seq_len for i in range(r, seq_len + r))
                        rand[range(seq_len), tgt_idx] = 0
                _, idx = rand.topk(self.random_attn, dim=-1)  # seq_len, random_attn
                idx, _ = torch.sort(idx, dim=1)
                attn_idx[:, cnt:] = idx

                idx_ = repeat(idx, 'n m -> b h n m i d', b=bsz, h=num_heads, i=group_len, d=dims)

                for r in range(self.random_attn):
                    sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.gather(2, idx_[..., r, :, :]))
                    cnt += 1

            sim = rearrange(sim, 'b h m n i j -> b h m i (n j)')  # (bsz, num_heads, seq_len, group_len, num_kv_blocks * group_len)
            sim = torch.cat((cls_sim, sim), -1)
            sim = sim / math.sqrt(self.attention_head_size)

            # Add relative position bias if present.
            # NOTE: we assume q and k (excluding cls) use same token indexing, for relative position embedding
            if self.relative_position_bias is not None:
                assert q_idx is not None, "query index required for relative position bias"
                if q_idx.ndim == 2:
                    # different indices for each sample
                    bias = torch.stack([
                        self._sparse_attn_relative_position_bias(q_idx_, pad_q, attn_idx, group_len)
                        for q_idx_ in q_idx
                    ])
                else:
                    bias = self._sparse_attn_relative_position_bias(q_idx, pad_q, attn_idx, group_len).unsqueeze(0)
                sim = sim + bias

        # Add shared relative position bias if provided.
        if relative_position_bias is not None:
            raise NotImplementedError
            sim = sim + relative_position_bias

        attn = sim.softmax(dim=-1)
        attn = self.dropout(attn)
        if head_mask is not None:
            attn = attn * head_mask

        # block attention
        if mimic_full:
            out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)

        else:
            out = torch.empty((bsz, num_heads, seq_len, group_len, dims), device=q.device)
            for m in range(seq_len):
                v_row = torch.index_select(v, 2, attn_idx[m])
                v_row = rearrange(v_row, 'b h n j d -> b h (n j) d')  # (bsz, num_heads, num_kv_blocks * group_len, dims)
                v_row = torch.cat((cls_v, v_row), 2)
                out[..., m, :, :] = torch.einsum('b h i j, b h j d -> b h i d', attn[..., m, :, :], v_row)
            out = rearrange(out, 'b h n i d -> b h (n i) d')
            if pad_q > 0:
                out = out[..., :-pad_q, :]

        return out, attn
        
    def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
        # compute qkv
        q = self.split_heads(self.query(hidden_states))
        k = self.split_heads(self.key(hidden_states))
        v = self.split_heads(self.value(hidden_states))
        
        # combine local token_idx with cls tokens
        # NOTE: assume token_idx starts from 0
        cls_q_idx = torch.arange(self.num_cls_tokens, device=q.device)
        if token_idx is not None:
            if token_idx.ndim == 2:
                cls_q_idx = repeat(cls_q_idx, 'n -> b n', b=q.shape[0])
            all_token_idx = torch.cat((cls_q_idx, token_idx + self.num_cls_tokens), dim=-1)
        else:
            all_token_idx = None

        if self.random_attn is None:
            outputs, attention_probs = self.dense_attention(q, k, v, head_mask=head_mask,
                                                            relative_position_bias=relative_position_bias,
                                                            q_idx=all_token_idx,
                                                            k_idx=all_token_idx)
            cls_attention_probs = attention_probs[..., :self.num_cls_tokens, :]

        else:
            cls_q, q = q[..., :self.num_cls_tokens, :], q[..., self.num_cls_tokens:, :]

            # dense global attention (num_cls_tokens, seq_len)
            cls_outputs, cls_attention_probs = self.dense_attention(cls_q, k, v, head_mask=head_mask,
                                                                    relative_position_bias=relative_position_bias,
                                                                    q_idx=cls_q_idx,
                                                                    k_idx=all_token_idx)

            # sparse local attention (local_seq_len, seq_len)
            if token_idx is None:
                token_idx = torch.arange(q.shape[-2], device=q.device)
            outputs, attention_probs = self.sparse_attention(q, k, v, head_mask=head_mask,
                                                             relative_position_bias=relative_position_bias,
                                                             q_idx=token_idx + self.num_cls_tokens)

            outputs = torch.cat((cls_outputs, outputs), dim=2)
        
        outputs = self.join_heads(outputs)

        outputs = (outputs, cls_attention_probs) if output_attentions else (outputs,)

        return outputs


class BeitSelfOutput(nn.Module):
    """
    The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor, gamma=None):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


class BeitAttention(nn.Module):
    def __init__(self, config, window_size=None):
        super().__init__()
        self.attention = BeitSelfAttention(config, window_size=window_size)
        self.output = BeitSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
        self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias, token_idx)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class BeitIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


class BeitOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


class BeitLayer(nn.Module):
    """This corresponds to the Block class in the timm implementation."""

    def __init__(self, config, window_size=None, drop_path_rate=0.0, 
                 token_keep_rate=1.0):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BeitAttention(config, window_size=window_size)
        self.intermediate = BeitIntermediate(config)
        self.output = BeitOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # sparse params
        self.token_keep_rate = token_keep_rate
        self.token_keep_strategy = config.token_keep_strategy
        self.num_cls_tokens = config.num_cls_tokens

        init_values = config.layer_scale_init_value
        if init_values > 0:
            self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
            self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
        else:
            self.lambda_1, self.lambda_2 = None, None
    
    def sparsify(self, x, attn):
        x_cls, x_ = x[:, :self.num_cls_tokens], x[:, self.num_cls_tokens:]
        assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]"
        left_tokens = math.ceil(self.token_keep_rate * x_.size(1))

        if self.token_keep_strategy == 'cls_attn':
            if len(attn.shape) == 4:
                attn = attn.mean(1)  # pool over attention heads
            cls_attn = attn[:, 0, self.num_cls_tokens:]
            _, idx = torch.topk(cls_attn, left_tokens, dim=1)  # [B, left_tokens]

        elif self.token_keep_strategy == 'random':
            rand = torch.rand(x_.shape[:2], device=x_.device)
            _, idx = torch.topk(rand, left_tokens, dim=1)  # [B, left_tokens]

        else:
            raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented")

        idx, _ = torch.sort(idx, dim=1)
        index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1))  # [B, left_tokens, C]
        outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous()
        return outputs, idx

    def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
        self_attention_outputs = self.attention(
            self.layernorm_before(hidden_states),  # in BEiT, layernorm is applied before self-attention
            head_mask,
            output_attentions=(output_attentions or self.token_keep_rate < 1),
            relative_position_bias=relative_position_bias,
            token_idx=token_idx
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # apply lambda_1 if present
        if self.lambda_1 is not None:
            attention_output = self.lambda_1 * attention_output

        # first residual connection
        hidden_states = self.drop_path(attention_output) + hidden_states

        # in BEiT, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_states)

        layer_output = self.intermediate(layer_output)
        layer_output = self.output(layer_output)

        if self.lambda_2 is not None:
            layer_output = self.lambda_2 * layer_output

        # second residual connection
        layer_output = self.drop_path(layer_output) + hidden_states

        # node sparsification
        if self.token_keep_rate < 1:
            layer_output, token_keep_idx = self.sparsify(layer_output, outputs[0])
            if token_idx is not None:
                if token_idx.ndim == 1:
                    token_idx = repeat(token_idx, 'n -> b n', b=len(token_keep_idx))
                token_keep_idx = token_idx.gather(1, token_keep_idx)
            outputs = outputs + (token_keep_idx,)

        outputs = (layer_output,) + outputs

        return outputs


class BeitRelativePositionBias(nn.Module):
    def __init__(self, config, window_size):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, config.num_attention_heads)
        )  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = torch.zeros(
            size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
        )
        relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index", relative_position_index, persistent=False)

    def forward(self):
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
        )  # Wh*Ww,Wh*Ww,nH

        return relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class BeitRelativePositionBias3D(nn.Module):
    """
    3D relative position bias
    """
    def __init__(self, config, window_size, num_cls_tokens=1):
        super().__init__()
        self.window_size = window_size
        self.num_cls_tokens = num_cls_tokens
        
        relative_size = [w * 2 - 1 for w in window_size]
        self.num_relative_distance = np.prod(relative_size) + 2 * num_cls_tokens + num_cls_tokens ** 2

        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, config.num_attention_heads)
        )

        # get pair-wise relative position index for each token inside the window
        coords_range = [torch.arange(w) for w in window_size]
        coords_flatten = torch.stack(torch.meshgrid(coords_range)).flatten(1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        
        for i, w in enumerate(window_size):
            relative_coords[:, :, i] += w - 1  # shift to start from 0
        
        for i, r in enumerate(relative_size[1:]):
            relative_coords[:, :, :i + 1] *= r

        self.seq_len = np.prod(window_size) + num_cls_tokens
        relative_position_index = torch.zeros((self.seq_len, self.seq_len), dtype=relative_coords.dtype)
        relative_position_index[num_cls_tokens:, num_cls_tokens:] = relative_coords.sum(-1)
        
        start = np.prod(relative_size)
        cls2loc = torch.arange(num_cls_tokens).unsqueeze(1) + start
        relative_position_index[:num_cls_tokens, num_cls_tokens:] = cls2loc
        start += num_cls_tokens

        loc2cls = torch.arange(num_cls_tokens).unsqueeze(0) + start
        relative_position_index[num_cls_tokens:, :num_cls_tokens] = loc2cls
        start += num_cls_tokens

        cls2cls = torch.arange(num_cls_tokens ** 2).view(num_cls_tokens, num_cls_tokens) + start
        relative_position_index[:num_cls_tokens, :num_cls_tokens] = cls2cls

        self.register_buffer("relative_position_index", relative_position_index)

    def forward(self, from_idx=None, to_idx=None):
        """
        from_idx: indices of query tokens (1-dim)
        to_idx: indices of key/value tokens (1-dim, or 2-dim w/ one row per query)
        """
        attn_idx = self.relative_position_index

        # query indices
        if from_idx is not None:
            attn_idx = attn_idx[from_idx]

        # key indices
        if to_idx is not None:
            assert to_idx.ndim in (1, 2), "to_idx must be 1- or 2-dimensional tensors"
            if to_idx.ndim == 1:
                attn_idx = attn_idx[:, to_idx]
            else:
                attn_idx = attn_idx.gather(1, to_idx)

        rows, cols = attn_idx.shape
        relative_position_bias = self.relative_position_bias_table[attn_idx.flatten()]
        relative_position_bias = rearrange(relative_position_bias, '(i j) h -> h i j', i=rows, j=cols)
        return relative_position_bias.contiguous()


class BeitEncoder(nn.Module):
    def __init__(self, config, window_size=None):
        super().__init__()
        self.config = config
        if config.use_shared_relative_position_bias:
            self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
        else:
            self.relative_position_bias = None

        self._register_token_order(window_size)

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]

        # node sparsification
        token_keep_rate = [1] * config.num_hidden_layers
        for loc in config.token_drop_loc:
            token_keep_rate[loc] = config.token_keep_rate
        
        self.layer = nn.ModuleList(
            [
                BeitLayer(
                    config,
                    window_size=window_size if config.use_relative_position_bias else None,
                    drop_path_rate=dpr[i], token_keep_rate=token_keep_rate[i]
                )
                for i in range(config.num_hidden_layers)
            ]
        )

        self.gradient_checkpointing = False
    
    def _register_token_order(self, shape):
        if self.config.token_3d_order == 'none':
            order = None
        elif self.config.token_3d_order == 'zcurve':
            nbits = max(shape).bit_length()
            coords = list(np.ndindex(*shape))
            order = zCurve.par_interlace(coords, len(shape), nbits)
            order = torch.tensor(np.argsort(order))
        elif self.config.token_3d_order == 'hilbert':
            nbits = max(shape).bit_length()
            coords = list(np.ndindex(*shape))
            order = hilbert.encode(np.stack(coords), len(shape), nbits)
            order = torch.tensor(np.argsort(order))
        else:
            raise NotImplementedError(f"Token ordering {self.config.token_3d_order} not supported")

        if order is not None:
            self.register_buffer('token_order', order, persistent=False)
        else:
            self.token_order = None

    def forward(
        self,
        hidden_states,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        output_token_idx=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_token_idx = () if output_token_idx else None

        token_idx = self.token_order
        if token_idx is not None:
            cls_states, local_states = hidden_states[:, :self.config.num_cls_tokens], hidden_states[:, self.config.num_cls_tokens:]
            local_states = torch.index_select(local_states, dim=1, index=token_idx)
            hidden_states = torch.cat((cls_states, local_states), 1)

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    layer_head_mask,
                )
            else:
                relative_position_bias = (
                    self.relative_position_bias() if self.relative_position_bias is not None else None
                )
                layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias, token_idx)

            hidden_states = layer_outputs[0]

            if layer_module.token_keep_rate < 1:
                token_idx = layer_outputs[-1]

                if output_token_idx:
                    all_token_idx = all_token_idx + (token_idx,)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BeitModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            token_idx=all_token_idx
        )


class BeitPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BeitConfig
    base_model_prefix = "beit"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, BeitEncoder):
            module.gradient_checkpointing = value


BEIT_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config (:class:`~transformers.BeitConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

BEIT_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using :class:`~transformers.BeitFeatureExtractor`. See
            :meth:`transformers.BeitFeatureExtractor.__call__` for details.

        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
    BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
    def __init__(self, config, add_pooling_layer=True, num_frames=None):
        super().__init__(config)
        self.config = config

        self.embeddings = BeitEmbeddings(config)
        self.window_size = self.embeddings.patch_embeddings.patch_shape
        if num_frames is not None:
            self.window_size = (num_frames,) + self.window_size
        self.encoder = BeitEncoder(config, window_size=self.window_size)

        self.layernorm = (
            nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        )
        self.pooler = BeitPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values=None,
        bool_masked_pos=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        output_token_idx=None,
        return_dict=None,
    ):
        r"""
        Returns:

        Examples::

            >>> from transformers import BeitFeatureExtractor, BeitModel
            >>> from PIL import Image
            >>> import requests

            >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
            >>> image = Image.open(requests.get(url, stream=True).raw)

            >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
            >>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')

            >>> inputs = feature_extractor(images=image, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> last_hidden_states = outputs.last_hidden_state
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(pixel_values, bool_masked_pos)

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_token_idx=output_token_idx,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BeitModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            token_idx=encoder_outputs.token_idx,
        )


class BeitPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layernorm = (
            nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
        )

    def forward(self, hidden_states):
        if self.layernorm is not None:
            # Mean pool the final hidden states of the patch tokens
            patch_tokens = hidden_states[:, 1:, :]
            pooled_output = self.layernorm(patch_tokens.mean(1))
        else:
            # Pool by simply taking the final hidden state of the [CLS] token
            pooled_output = hidden_states[:, 0]

        return pooled_output


@add_start_docstrings(
    "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
    BEIT_START_DOCSTRING,
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.beit = BeitModel(config, add_pooling_layer=False)

        # Classifier head
        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values=None,
        bool_masked_pos=None,
        head_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        bool_masked_pos (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples::

            >>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
            >>> from PIL import Image
            >>> import requests

            >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
            >>> image = Image.open(requests.get(url, stream=True).raw)

            >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
            >>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k')

            >>> inputs = feature_extractor(images=image, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> logits = outputs.logits
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.beit(
            pixel_values,
            bool_masked_pos=bool_masked_pos,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        sequence_output = self.layernorm(sequence_output)
        prediction_scores = self.lm_head(sequence_output[:, 1:])

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
    hidden states of the patch tokens) e.g. for ImageNet.
    """,
    BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.beit = BeitModel(config, add_pooling_layer=True)

        # Classifier head
        self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values=None,
        head_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples::

            >>> from transformers import BeitFeatureExtractor, BeitForImageClassification
            >>> from PIL import Image
            >>> import requests

            >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
            >>> image = Image.open(requests.get(url, stream=True).raw)

            >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
            >>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')

            >>> inputs = feature_extractor(images=image, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> logits = outputs.logits
            >>> # model predicts one of the 1000 ImageNet classes
            >>> predicted_class_idx = logits.argmax(-1).item()
            >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.beit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs.pooler_output if return_dict else outputs[1]

        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class BeitConvModule(nn.Module):
    """
    A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
    layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).

    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

    def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=False, dilation=1):
        super().__init__()
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            padding=padding,
            bias=bias,
            dilation=dilation,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.activation = nn.ReLU()

    def forward(self, input):
        output = self.conv(input)
        output = self.bn(output)
        output = self.activation(output)

        return output


class BeitPyramidPoolingModule(nn.ModuleList):
    """
    Pyramid Pooling Module (PPM) used in PSPNet.

    Args:
        pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module.
        in_channels (int): Input channels.
        channels (int): Channels after modules, before conv_seg.
        align_corners (bool): align_corners argument of F.interpolate.

    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

    def __init__(self, pool_scales, in_channels, channels, align_corners):
        super().__init__()
        self.pool_scales = pool_scales
        self.align_corners = align_corners
        self.in_channels = in_channels
        self.channels = channels
        for pool_scale in pool_scales:
            self.append(
                nn.Sequential(
                    nn.AdaptiveAvgPool2d(pool_scale),
                    BeitConvModule(self.in_channels, self.channels, kernel_size=1),
                )
            )

    def forward(self, x):
        ppm_outs = []
        for ppm in self:
            ppm_out = ppm(x)
            upsampled_ppm_out = nn.functional.interpolate(
                ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
            )
            ppm_outs.append(upsampled_ppm_out)
        return ppm_outs


class BeitUperHead(nn.Module):
    """
    Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet
    <https://arxiv.org/abs/1807.10221>`_.

    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

    def __init__(self, config):
        super().__init__()

        self.pool_scales = config.pool_scales  # e.g. (1, 2, 3, 6)
        self.in_channels = [config.hidden_size] * 4  # e.g. [768, 768, 768, 768]
        self.channels = config.hidden_size
        self.align_corners = False
        self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)

        # PSP Module
        self.psp_modules = BeitPyramidPoolingModule(
            self.pool_scales,
            self.in_channels[-1],
            self.channels,
            align_corners=self.align_corners,
        )
        self.bottleneck = BeitConvModule(
            self.in_channels[-1] + len(self.pool_scales) * self.channels,
            self.channels,
            kernel_size=3,
            padding=1,
        )
        # FPN Module
        self.lateral_convs = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()
        for in_channels in self.in_channels[:-1]:  # skip the top layer
            l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
            fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
            self.lateral_convs.append(l_conv)
            self.fpn_convs.append(fpn_conv)

        self.fpn_bottleneck = BeitConvModule(
            len(self.in_channels) * self.channels,
            self.channels,
            kernel_size=3,
            padding=1,
        )

    def psp_forward(self, inputs):
        x = inputs[-1]
        psp_outs = [x]
        psp_outs.extend(self.psp_modules(x))
        psp_outs = torch.cat(psp_outs, dim=1)
        output = self.bottleneck(psp_outs)

        return output

    def forward(self, encoder_hidden_states):
        # build laterals
        laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]

        laterals.append(self.psp_forward(encoder_hidden_states))

        # build top-down path
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            prev_shape = laterals[i - 1].shape[2:]
            laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
                laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
            )

        # build outputs
        fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
        # append psp feature
        fpn_outs.append(laterals[-1])

        for i in range(used_backbone_levels - 1, 0, -1):
            fpn_outs[i] = nn.functional.interpolate(
                fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
            )
        fpn_outs = torch.cat(fpn_outs, dim=1)
        output = self.fpn_bottleneck(fpn_outs)
        output = self.classifier(output)

        return output


class BeitFCNHead(nn.Module):
    """
    Fully Convolution Networks for Semantic Segmentation. This head is implemented of `FCNNet
    <https://arxiv.org/abs/1411.4038>`_.

    Args:
        config (BeitConfig): Configuration.
        in_channels
        kernel_size (int): The kernel size for convs in the head. Default: 3.
        dilation (int): The dilation rate for convs in the head. Default: 1.


    Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
    """

    def __init__(self, config, in_index=2, kernel_size=3, dilation=1):
        super().__init__()
        self.in_channels = config.hidden_size
        self.channels = config.auxiliary_channels
        self.num_convs = config.auxiliary_num_convs
        self.concat_input = config.auxiliary_concat_input
        self.in_index = in_index

        conv_padding = (kernel_size // 2) * dilation
        convs = []
        convs.append(
            BeitConvModule(
                self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
            )
        )
        for i in range(self.num_convs - 1):
            convs.append(
                BeitConvModule(
                    self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
                )
            )
        if self.num_convs == 0:
            self.convs = nn.Identity()
        else:
            self.convs = nn.Sequential(*convs)
        if self.concat_input:
            self.conv_cat = BeitConvModule(
                self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
            )

        self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)

    def forward(self, encoder_hidden_states):
        # just take the relevant feature maps
        hidden_states = encoder_hidden_states[self.in_index]
        output = self.convs(hidden_states)
        if self.concat_input:
            output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
        output = self.classifier(output)
        return output


@add_start_docstrings(
    """
    Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
    """,
    BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.beit = BeitModel(config, add_pooling_layer=False)

        # FPNs
        self.fpn1 = nn.Sequential(
            nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
            nn.BatchNorm2d(config.hidden_size),
            nn.GELU(),
            nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
        )
        self.fpn2 = nn.Sequential(
            nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
        )
        self.fpn3 = nn.Identity()
        self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)

        # Semantic segmentation head(s)
        self.decode_head = BeitUperHead(config)
        self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None

        # Initialize weights and apply final processing
        self.post_init()

    def compute_loss(self, logits, auxiliary_logits, labels):
        # upsample logits to the images' original size
        upsampled_logits = nn.functional.interpolate(
            logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
        )
        if auxiliary_logits is not None:
            upsampled_auxiliary_logits = nn.functional.interpolate(
                auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
            )
        # compute weighted loss
        loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
        main_loss = loss_fct(upsampled_logits, labels)
        auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
        loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss

        return loss

    @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values=None,
        head_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, height, width)`, `optional`):
            Ground truth semantic segmentation maps for computing the loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels > 1`, a classification loss is computed
            (Cross-Entropy).

        Returns:

        Examples::

            >>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
            >>> from PIL import Image
            >>> import requests

            >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
            >>> image = Image.open(requests.get(url, stream=True).raw)

            >>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
            >>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')

            >>> inputs = feature_extractor(images=image, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> # logits are of shape (batch_size, num_labels, height/4, width/4)
            >>> logits = outputs.logits
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.beit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=True,  # we need the intermediate hidden states
            return_dict=return_dict,
        )

        encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2]

        # only keep certain features, and reshape
        # note that we do +1 as the encoder_hidden_states also includes the initial embeddings
        features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
        batch_size = pixel_values.shape[0]
        patch_resolution = self.config.image_size // self.config.patch_size
        features = [
            x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
        ]

        # apply FPNs
        ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
        for i in range(len(features)):
            features[i] = ops[i](features[i])

        logits = self.decode_head(features)
        auxiliary_logits = None
        if self.auxiliary_head is not None:
            auxiliary_logits = self.auxiliary_head(features)

        loss = None
        if labels is not None:
            if self.config.num_labels == 1:
                raise ValueError("The number of labels should be greater than one")
            else:
                loss = self.compute_loss(logits, auxiliary_logits, labels)

        if not return_dict:
            if output_hidden_states:
                output = (logits,) + outputs[2:]
            else:
                output = (logits,) + outputs[3:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions,
        )