Spaces:
Runtime error
Runtime error
File size: 67,146 Bytes
a17aefb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 |
# coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BEiT model. """
import collections.abc
import math
import numpy as np
from dataclasses import dataclass
from typing import Optional, Tuple
import zCurve
import hilbert
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from einops import rearrange, repeat
from transformers.activations import ACT2FN
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from svitt.sparse_config import BeitConfig
_CONFIG_FOR_DOC = "BeitConfig"
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224"
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/beit-base-patch16-224",
# See all BEiT models at https://huggingface.co/models?filter=beit
]
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of :class:`~transformers.BeitModel`.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the `[CLS]` token) if
`config.use_mean_pooling` is set to True. If set to False, then the final hidden state of the `[CLS]` token
will be returned.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
token_idx: Optional[Tuple[torch.LongTensor]] = None
@dataclass
class BeitModelOutput(BaseModelOutput):
token_idx: Optional[Tuple[torch.LongTensor]] = None
# Inspired by
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
# From PyTorch internals
def to_2tuple(x):
if isinstance(x, collections.abc.Iterable):
return x
return (x, x)
# Based on https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config):
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = PatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values, bool_masked_pos=None):
if pixel_values.ndim == 5: # video input=
embeddings = self.patch_embeddings(pixel_values.flatten(0, 1))
embeddings = rearrange(embeddings, '(b m) n d -> b (m n) d', m=pixel_values.shape[1])
else: # image input
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class PatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768):
super().__init__()
image_size = to_2tuple(image_size)
patch_size = to_2tuple(patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_channels, height, width = pixel_values.shape
# FIXME look at relaxing size constraints
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
class BeitSelfAttention(nn.Module):
def __init__(self, config, window_size=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
# sparse params
self.random_attn = config.sparse_random_attn
self.local_attn = config.sparse_local_attn
self.block_size = config.attn_block_size
self.num_cls_tokens = config.num_cls_tokens
if self.local_attn is not None and self.random_attn is not None:
self.num_kv_blocks = self.local_attn + self.random_attn
if window_size:
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
else:
self.relative_position_bias = None
def split_heads(self, x):
return rearrange(x, 'b n (h d) -> b h n d', h=self.num_attention_heads)
def join_heads(self, x):
return rearrange(x, 'b h n d -> b n (h d)')
def blockify(self, x):
assert x.dim() == 4, f"Unsupported input shape {x.shape}"
seq_len = x.shape[2]
if seq_len % self.block_size > 0: # seq_len not divisible by block_size, zero pad
pad_len = self.block_size - seq_len % self.block_size
x = nn.functional.pad(x, (0, 0, 0, pad_len))
else:
pad_len = 0
x = rearrange(x, 'b h (m n) d -> b h m n d', n=self.block_size)
return x, pad_len
def dense_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, k_idx=None):
# q, k, v: (bsz, num_heads, seq_len, dims)
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
sim = sim / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.relative_position_bias is not None:
if q_idx is not None and q_idx.ndim == 2:
assert k_idx is not None and len(q_idx) == len(k_idx)
bias = torch.stack([
self.relative_position_bias(from_idx=q_idx_, to_idx=k_idx_)
for q_idx_, k_idx_ in zip(q_idx, k_idx)
])
else:
bias = self.relative_position_bias(from_idx=q_idx, to_idx=k_idx).unsqueeze(0)
sim = sim + bias
# Add shared relative position bias if provided.
if relative_position_bias is not None:
sim = sim + relative_position_bias
# Normalize the attention scores to probabilities.
attn = sim.softmax(dim=-1)
attn = self.dropout(attn)
if head_mask is not None:
attn = attn * head_mask
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
return out, attn
def _sparse_attn_relative_position_bias(self, q_idx, pad_q, attn_idx, group_len):
q_idx_blk = nn.functional.pad(q_idx, (0, pad_q)).view(-1, self.block_size)
attn_idx_flt = rearrange(q_idx_blk[attn_idx], 'm n j -> m (n j)') # (seq_len, num_kv_blocks * group_len)
cls_idx = torch.arange(self.num_cls_tokens, device=q_idx.device)
cls_idx = repeat(cls_idx, 'n -> m n', m=len(attn_idx_flt))
attn_idx_flt = torch.cat((cls_idx, attn_idx_flt), dim=1)
attn_idx_flt = repeat(attn_idx_flt, 'm n -> (m i) n', i=group_len)
if pad_q > 0:
attn_idx_flt = attn_idx_flt[:-pad_q]
bias_flt = self.relative_position_bias(from_idx=q_idx, to_idx=attn_idx_flt)
if pad_q > 0:
bias_flt = nn.functional.pad(bias_flt, (0, 0, 0, pad_q))
return rearrange(bias_flt, 'h (m i) n -> h m i n', i=group_len) # num_heads, seq_len, group_len, (num_kv_blocks * group_len + num_cls_tokens)
def sparse_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, mimic_full=False):
assert self.local_attn == 0 or self.local_attn % 2 == 1, "Even local window size not supported"
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
if not mimic_full:
cls_k, k = k[..., :self.num_cls_tokens, :], k[..., self.num_cls_tokens:, :] # cls_k: (bsz, num_heads, num_cls_tokens, dims)
cls_v, v = v[..., :self.num_cls_tokens, :], v[..., self.num_cls_tokens:, :]
# pad token sequence to multiples of block_size
if mimic_full:
bsz, num_heads, seq_len, dims = q.shape
else:
q, pad_q = self.blockify(q) # q: (bsz, num_heads, seq_len, group_len, dims)
k, pad_k = self.blockify(k)
v, pad_v = self.blockify(v)
bsz, num_heads, seq_len, group_len, dims = q.shape
# global attention
cls_sim = torch.einsum('b h n i d, b h j d -> b h n i j', q, cls_k) # (bsz, num_heads, seq_len, group_len, num_cls_tokens)
if mimic_full:
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
sim = sim / math.sqrt(self.attention_head_size)
sim = sim + self.relative_position_bias(from_idx=q_idx).unsqueeze(0)
else:
# initialize empty sim matrix
sim = torch.empty((bsz, num_heads, seq_len, self.num_kv_blocks, group_len, group_len), device=q.device)
attn_idx = torch.zeros((seq_len, self.num_kv_blocks), dtype=torch.int64, device=q.device)
# local window attention
cnt = 0
if self.local_attn > 0:
num_rolls = self.local_attn // 2
for r in range(-num_rolls, num_rolls + 1):
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.roll(-r, dims=2))
attn_idx[:, cnt] = torch.arange(seq_len, device=q.device).roll(r)
cnt += 1
# random attention
if self.random_attn > 0:
# generate random attention pattern
rand = torch.rand((seq_len, seq_len), device=q.device)
if self.local_attn > 0:
# avoid overlap with local attention
for r in range(-num_rolls, num_rolls + 1):
tgt_idx = list(i % seq_len for i in range(r, seq_len + r))
rand[range(seq_len), tgt_idx] = 0
_, idx = rand.topk(self.random_attn, dim=-1) # seq_len, random_attn
idx, _ = torch.sort(idx, dim=1)
attn_idx[:, cnt:] = idx
idx_ = repeat(idx, 'n m -> b h n m i d', b=bsz, h=num_heads, i=group_len, d=dims)
for r in range(self.random_attn):
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.gather(2, idx_[..., r, :, :]))
cnt += 1
sim = rearrange(sim, 'b h m n i j -> b h m i (n j)') # (bsz, num_heads, seq_len, group_len, num_kv_blocks * group_len)
sim = torch.cat((cls_sim, sim), -1)
sim = sim / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
# NOTE: we assume q and k (excluding cls) use same token indexing, for relative position embedding
if self.relative_position_bias is not None:
assert q_idx is not None, "query index required for relative position bias"
if q_idx.ndim == 2:
# different indices for each sample
bias = torch.stack([
self._sparse_attn_relative_position_bias(q_idx_, pad_q, attn_idx, group_len)
for q_idx_ in q_idx
])
else:
bias = self._sparse_attn_relative_position_bias(q_idx, pad_q, attn_idx, group_len).unsqueeze(0)
sim = sim + bias
# Add shared relative position bias if provided.
if relative_position_bias is not None:
raise NotImplementedError
sim = sim + relative_position_bias
attn = sim.softmax(dim=-1)
attn = self.dropout(attn)
if head_mask is not None:
attn = attn * head_mask
# block attention
if mimic_full:
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
else:
out = torch.empty((bsz, num_heads, seq_len, group_len, dims), device=q.device)
for m in range(seq_len):
v_row = torch.index_select(v, 2, attn_idx[m])
v_row = rearrange(v_row, 'b h n j d -> b h (n j) d') # (bsz, num_heads, num_kv_blocks * group_len, dims)
v_row = torch.cat((cls_v, v_row), 2)
out[..., m, :, :] = torch.einsum('b h i j, b h j d -> b h i d', attn[..., m, :, :], v_row)
out = rearrange(out, 'b h n i d -> b h (n i) d')
if pad_q > 0:
out = out[..., :-pad_q, :]
return out, attn
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
# compute qkv
q = self.split_heads(self.query(hidden_states))
k = self.split_heads(self.key(hidden_states))
v = self.split_heads(self.value(hidden_states))
# combine local token_idx with cls tokens
# NOTE: assume token_idx starts from 0
cls_q_idx = torch.arange(self.num_cls_tokens, device=q.device)
if token_idx is not None:
if token_idx.ndim == 2:
cls_q_idx = repeat(cls_q_idx, 'n -> b n', b=q.shape[0])
all_token_idx = torch.cat((cls_q_idx, token_idx + self.num_cls_tokens), dim=-1)
else:
all_token_idx = None
if self.random_attn is None:
outputs, attention_probs = self.dense_attention(q, k, v, head_mask=head_mask,
relative_position_bias=relative_position_bias,
q_idx=all_token_idx,
k_idx=all_token_idx)
cls_attention_probs = attention_probs[..., :self.num_cls_tokens, :]
else:
cls_q, q = q[..., :self.num_cls_tokens, :], q[..., self.num_cls_tokens:, :]
# dense global attention (num_cls_tokens, seq_len)
cls_outputs, cls_attention_probs = self.dense_attention(cls_q, k, v, head_mask=head_mask,
relative_position_bias=relative_position_bias,
q_idx=cls_q_idx,
k_idx=all_token_idx)
# sparse local attention (local_seq_len, seq_len)
if token_idx is None:
token_idx = torch.arange(q.shape[-2], device=q.device)
outputs, attention_probs = self.sparse_attention(q, k, v, head_mask=head_mask,
relative_position_bias=relative_position_bias,
q_idx=token_idx + self.num_cls_tokens)
outputs = torch.cat((cls_outputs, outputs), dim=2)
outputs = self.join_heads(outputs)
outputs = (outputs, cls_attention_probs) if output_attentions else (outputs,)
return outputs
class BeitSelfOutput(nn.Module):
"""
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor, gamma=None):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitAttention(nn.Module):
def __init__(self, config, window_size=None):
super().__init__()
self.attention = BeitSelfAttention(config, window_size=window_size)
self.output = BeitSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias, token_idx)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BeitIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BeitOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config, window_size=None, drop_path_rate=0.0,
token_keep_rate=1.0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BeitAttention(config, window_size=window_size)
self.intermediate = BeitIntermediate(config)
self.output = BeitOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# sparse params
self.token_keep_rate = token_keep_rate
self.token_keep_strategy = config.token_keep_strategy
self.num_cls_tokens = config.num_cls_tokens
init_values = config.layer_scale_init_value
if init_values > 0:
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
else:
self.lambda_1, self.lambda_2 = None, None
def sparsify(self, x, attn):
x_cls, x_ = x[:, :self.num_cls_tokens], x[:, self.num_cls_tokens:]
assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]"
left_tokens = math.ceil(self.token_keep_rate * x_.size(1))
if self.token_keep_strategy == 'cls_attn':
if len(attn.shape) == 4:
attn = attn.mean(1) # pool over attention heads
cls_attn = attn[:, 0, self.num_cls_tokens:]
_, idx = torch.topk(cls_attn, left_tokens, dim=1) # [B, left_tokens]
elif self.token_keep_strategy == 'random':
rand = torch.rand(x_.shape[:2], device=x_.device)
_, idx = torch.topk(rand, left_tokens, dim=1) # [B, left_tokens]
else:
raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented")
idx, _ = torch.sort(idx, dim=1)
index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) # [B, left_tokens, C]
outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous()
return outputs, idx
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
head_mask,
output_attentions=(output_attentions or self.token_keep_rate < 1),
relative_position_bias=relative_position_bias,
token_idx=token_idx
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
# node sparsification
if self.token_keep_rate < 1:
layer_output, token_keep_idx = self.sparsify(layer_output, outputs[0])
if token_idx is not None:
if token_idx.ndim == 1:
token_idx = repeat(token_idx, 'n -> b n', b=len(token_keep_idx))
token_keep_idx = token_idx.gather(1, token_keep_idx)
outputs = outputs + (token_keep_idx,)
outputs = (layer_output,) + outputs
return outputs
class BeitRelativePositionBias(nn.Module):
def __init__(self, config, window_size):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
def forward(self):
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class BeitRelativePositionBias3D(nn.Module):
"""
3D relative position bias
"""
def __init__(self, config, window_size, num_cls_tokens=1):
super().__init__()
self.window_size = window_size
self.num_cls_tokens = num_cls_tokens
relative_size = [w * 2 - 1 for w in window_size]
self.num_relative_distance = np.prod(relative_size) + 2 * num_cls_tokens + num_cls_tokens ** 2
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
)
# get pair-wise relative position index for each token inside the window
coords_range = [torch.arange(w) for w in window_size]
coords_flatten = torch.stack(torch.meshgrid(coords_range)).flatten(1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
for i, w in enumerate(window_size):
relative_coords[:, :, i] += w - 1 # shift to start from 0
for i, r in enumerate(relative_size[1:]):
relative_coords[:, :, :i + 1] *= r
self.seq_len = np.prod(window_size) + num_cls_tokens
relative_position_index = torch.zeros((self.seq_len, self.seq_len), dtype=relative_coords.dtype)
relative_position_index[num_cls_tokens:, num_cls_tokens:] = relative_coords.sum(-1)
start = np.prod(relative_size)
cls2loc = torch.arange(num_cls_tokens).unsqueeze(1) + start
relative_position_index[:num_cls_tokens, num_cls_tokens:] = cls2loc
start += num_cls_tokens
loc2cls = torch.arange(num_cls_tokens).unsqueeze(0) + start
relative_position_index[num_cls_tokens:, :num_cls_tokens] = loc2cls
start += num_cls_tokens
cls2cls = torch.arange(num_cls_tokens ** 2).view(num_cls_tokens, num_cls_tokens) + start
relative_position_index[:num_cls_tokens, :num_cls_tokens] = cls2cls
self.register_buffer("relative_position_index", relative_position_index)
def forward(self, from_idx=None, to_idx=None):
"""
from_idx: indices of query tokens (1-dim)
to_idx: indices of key/value tokens (1-dim, or 2-dim w/ one row per query)
"""
attn_idx = self.relative_position_index
# query indices
if from_idx is not None:
attn_idx = attn_idx[from_idx]
# key indices
if to_idx is not None:
assert to_idx.ndim in (1, 2), "to_idx must be 1- or 2-dimensional tensors"
if to_idx.ndim == 1:
attn_idx = attn_idx[:, to_idx]
else:
attn_idx = attn_idx.gather(1, to_idx)
rows, cols = attn_idx.shape
relative_position_bias = self.relative_position_bias_table[attn_idx.flatten()]
relative_position_bias = rearrange(relative_position_bias, '(i j) h -> h i j', i=rows, j=cols)
return relative_position_bias.contiguous()
class BeitEncoder(nn.Module):
def __init__(self, config, window_size=None):
super().__init__()
self.config = config
if config.use_shared_relative_position_bias:
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
else:
self.relative_position_bias = None
self._register_token_order(window_size)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
# node sparsification
token_keep_rate = [1] * config.num_hidden_layers
for loc in config.token_drop_loc:
token_keep_rate[loc] = config.token_keep_rate
self.layer = nn.ModuleList(
[
BeitLayer(
config,
window_size=window_size if config.use_relative_position_bias else None,
drop_path_rate=dpr[i], token_keep_rate=token_keep_rate[i]
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def _register_token_order(self, shape):
if self.config.token_3d_order == 'none':
order = None
elif self.config.token_3d_order == 'zcurve':
nbits = max(shape).bit_length()
coords = list(np.ndindex(*shape))
order = zCurve.par_interlace(coords, len(shape), nbits)
order = torch.tensor(np.argsort(order))
elif self.config.token_3d_order == 'hilbert':
nbits = max(shape).bit_length()
coords = list(np.ndindex(*shape))
order = hilbert.encode(np.stack(coords), len(shape), nbits)
order = torch.tensor(np.argsort(order))
else:
raise NotImplementedError(f"Token ordering {self.config.token_3d_order} not supported")
if order is not None:
self.register_buffer('token_order', order, persistent=False)
else:
self.token_order = None
def forward(
self,
hidden_states,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
output_token_idx=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_token_idx = () if output_token_idx else None
token_idx = self.token_order
if token_idx is not None:
cls_states, local_states = hidden_states[:, :self.config.num_cls_tokens], hidden_states[:, self.config.num_cls_tokens:]
local_states = torch.index_select(local_states, dim=1, index=token_idx)
hidden_states = torch.cat((cls_states, local_states), 1)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
layer_head_mask,
)
else:
relative_position_bias = (
self.relative_position_bias() if self.relative_position_bias is not None else None
)
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias, token_idx)
hidden_states = layer_outputs[0]
if layer_module.token_keep_rate < 1:
token_idx = layer_outputs[-1]
if output_token_idx:
all_token_idx = all_token_idx + (token_idx,)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BeitModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
token_idx=all_token_idx
)
class BeitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BeitEncoder):
module.gradient_checkpointing = value
BEIT_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config (:class:`~transformers.BeitConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using :class:`~transformers.BeitFeatureExtractor`. See
:meth:`transformers.BeitFeatureExtractor.__call__` for details.
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, num_frames=None):
super().__init__(config)
self.config = config
self.embeddings = BeitEmbeddings(config)
self.window_size = self.embeddings.patch_embeddings.patch_shape
if num_frames is not None:
self.window_size = (num_frames,) + self.window_size
self.encoder = BeitEncoder(config, window_size=self.window_size)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
self.pooler = BeitPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
bool_masked_pos=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
output_token_idx=None,
return_dict=None,
):
r"""
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitModel
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
>>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_token_idx=output_token_idx,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BeitModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
token_idx=encoder_outputs.token_idx,
)
class BeitPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.layernorm = (
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
)
def forward(self, hidden_states):
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
@add_start_docstrings(
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
BEIT_START_DOCSTRING,
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# Classifier head
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
bool_masked_pos=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
bool_masked_pos (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
>>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=True)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitForImageClassification
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
>>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BeitConvModule(nn.Module):
"""
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=False, dilation=1):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
dilation=dilation,
)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.activation(output)
return output
class BeitPyramidPoolingModule(nn.ModuleList):
"""
Pyramid Pooling Module (PPM) used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
align_corners (bool): align_corners argument of F.interpolate.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, pool_scales, in_channels, channels, align_corners):
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
for pool_scale in pool_scales:
self.append(
nn.Sequential(
nn.AdaptiveAvgPool2d(pool_scale),
BeitConvModule(self.in_channels, self.channels, kernel_size=1),
)
)
def forward(self, x):
ppm_outs = []
for ppm in self:
ppm_out = ppm(x)
upsampled_ppm_out = nn.functional.interpolate(
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
class BeitUperHead(nn.Module):
"""
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet
<https://arxiv.org/abs/1807.10221>`_.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config):
super().__init__()
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
self.channels = config.hidden_size
self.align_corners = False
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
# PSP Module
self.psp_modules = BeitPyramidPoolingModule(
self.pool_scales,
self.in_channels[-1],
self.channels,
align_corners=self.align_corners,
)
self.bottleneck = BeitConvModule(
self.in_channels[-1] + len(self.pool_scales) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
# FPN Module
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
self.fpn_bottleneck = BeitConvModule(
len(self.in_channels) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
def psp_forward(self, inputs):
x = inputs[-1]
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
output = self.bottleneck(psp_outs)
return output
def forward(self, encoder_hidden_states):
# build laterals
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
laterals.append(self.psp_forward(encoder_hidden_states))
# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
)
# build outputs
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
# append psp feature
fpn_outs.append(laterals[-1])
for i in range(used_backbone_levels - 1, 0, -1):
fpn_outs[i] = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
)
fpn_outs = torch.cat(fpn_outs, dim=1)
output = self.fpn_bottleneck(fpn_outs)
output = self.classifier(output)
return output
class BeitFCNHead(nn.Module):
"""
Fully Convolution Networks for Semantic Segmentation. This head is implemented of `FCNNet
<https://arxiv.org/abs/1411.4038>`_.
Args:
config (BeitConfig): Configuration.
in_channels
kernel_size (int): The kernel size for convs in the head. Default: 3.
dilation (int): The dilation rate for convs in the head. Default: 1.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config, in_index=2, kernel_size=3, dilation=1):
super().__init__()
self.in_channels = config.hidden_size
self.channels = config.auxiliary_channels
self.num_convs = config.auxiliary_num_convs
self.concat_input = config.auxiliary_concat_input
self.in_index = in_index
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
BeitConvModule(
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
for i in range(self.num_convs - 1):
convs.append(
BeitConvModule(
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
if self.num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = BeitConvModule(
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
)
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
def forward(self, encoder_hidden_states):
# just take the relevant feature maps
hidden_states = encoder_hidden_states[self.in_index]
output = self.convs(hidden_states)
if self.concat_input:
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
output = self.classifier(output)
return output
@add_start_docstrings(
"""
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# FPNs
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(config.hidden_size),
nn.GELU(),
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# Semantic segmentation head(s)
self.decode_head = BeitUperHead(config)
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
def compute_loss(self, logits, auxiliary_logits, labels):
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
return loss
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, height, width)`, `optional`):
Ground truth semantic segmentation maps for computing the loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels > 1`, a classification loss is computed
(Cross-Entropy).
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
>>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height/4, width/4)
>>> logits = outputs.logits
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2]
# only keep certain features, and reshape
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
batch_size = pixel_values.shape[0]
patch_resolution = self.config.image_size // self.config.patch_size
features = [
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
]
# apply FPNs
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
logits = self.decode_head(features)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(features)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
loss = self.compute_loss(logits, auxiliary_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[2:]
else:
output = (logits,) + outputs[3:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
) |