Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BERT model. """ | |
import math | |
import os | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
from torch import Tensor, device, nn | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
import torch.nn.functional as F | |
from transformers.activations import ACT2FN | |
from transformers.file_utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
NextSentencePredictorOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import ( | |
PreTrainedModel, | |
apply_chunking_to_forward, | |
find_pruneable_heads_and_indices, | |
prune_linear_layer, | |
) | |
from svitt.sparse_config import BertConfig | |
import transformers | |
transformers.logging.set_verbosity_error() | |
_CONFIG_FOR_DOC = "BertConfig" | |
_TOKENIZER_FOR_DOC = "BertTokenizer" | |
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"bert-base-uncased", | |
"bert-large-uncased", | |
"bert-base-cased", | |
"bert-large-cased", | |
"bert-base-multilingual-uncased", | |
"bert-base-multilingual-cased", | |
"bert-base-chinese", | |
"bert-base-german-cased", | |
"bert-large-uncased-whole-word-masking", | |
"bert-large-cased-whole-word-masking", | |
"bert-large-uncased-whole-word-masking-finetuned-squad", | |
"bert-large-cased-whole-word-masking-finetuned-squad", | |
"bert-base-cased-finetuned-mrpc", | |
"bert-base-german-dbmdz-cased", | |
"bert-base-german-dbmdz-uncased", | |
"cl-tohoku/bert-base-japanese", | |
"cl-tohoku/bert-base-japanese-whole-word-masking", | |
"cl-tohoku/bert-base-japanese-char", | |
"cl-tohoku/bert-base-japanese-char-whole-word-masking", | |
"TurkuNLP/bert-base-finnish-cased-v1", | |
"TurkuNLP/bert-base-finnish-uncased-v1", | |
"wietsedv/bert-base-dutch-cased", | |
# See all BERT models at https://huggingface.co/models?filter=bert | |
] | |
class BertModelOutputWithPastAndCrossAttentions(BaseModelOutputWithPastAndCrossAttentions): | |
token_idx: Optional[Tuple[torch.LongTensor]] = None | |
class BertModelOutputWithPoolingAndCrossAttentions(BaseModelOutputWithPoolingAndCrossAttentions): | |
token_idx: Optional[Tuple[torch.LongTensor]] = None | |
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
print( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", | |
"AdamWeightDecayOptimizer_1", "global_step"] | |
for n in name | |
): | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
assert ( | |
pointer.shape == array.shape | |
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
pointer.data = torch.from_numpy(array) | |
return model | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding( | |
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding( | |
config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer("position_ids", torch.arange( | |
config.max_position_embeddings).expand((1, -1))) | |
self.position_embedding_type = getattr( | |
config, "position_embedding_type", "absolute") | |
self.config = config | |
def forward( | |
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, | |
past_key_values_length: seq_length + past_key_values_length] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros( | |
input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertSelfAttention(nn.Module): | |
def __init__(self, config, is_cross_attention): | |
super().__init__() | |
self.config = config | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads) | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int( | |
config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
if is_cross_attention: | |
self.key = nn.Linear(config.encoder_width, self.all_head_size) | |
self.value = nn.Linear(config.encoder_width, self.all_head_size) | |
else: | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = getattr( | |
config, "position_embedding_type", "absolute") | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding( | |
2 * config.max_position_embeddings - 1, self.attention_head_size) | |
self.save_attention = False | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def save_attention_map(self, attention_map): | |
self.attention_map = attention_map | |
def get_attention_map(self): | |
return self.attention_map | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[ | |
:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
if is_cross_attention: | |
key_layer = self.transpose_for_scores( | |
self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores( | |
self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul( | |
query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = hidden_states.size()[1] | |
position_ids_l = torch.arange( | |
seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange( | |
seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding( | |
distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to( | |
dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum( | |
"bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum( | |
"bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum( | |
"bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + \ | |
relative_position_scores_query + relative_position_scores_key | |
attention_scores = attention_scores / \ | |
math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
if is_cross_attention and self.save_attention: | |
self.save_attention_map(attention_probs) | |
attention_probs.register_hook(self.save_attn_gradients) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs_dropped = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs_dropped = attention_probs_dropped * head_mask | |
context_layer = torch.matmul(attention_probs_dropped, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[ | |
:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
# added `attention_scores` to return tuple | |
outputs = (context_layer, attention_probs, attention_scores) if output_attentions else ( | |
context_layer,) | |
outputs = outputs + (past_key_value,) | |
return outputs | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertAttention(nn.Module): | |
def __init__(self, config, is_cross_attention=False): | |
super().__init__() | |
self.self = BertSelfAttention(config, is_cross_attention) | |
self.output = BertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - \ | |
len(heads) | |
self.self.all_head_size = self.self.attention_head_size * \ | |
self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
# add attentions if we output them | |
outputs = (attention_output,) + self_outputs[1:] | |
return outputs # (context_layer, attention_probs, attention_scores, past_key_value,) | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertLayer(nn.Module): | |
def __init__(self, config, layer_num, token_keep_rate=1.0): | |
super().__init__() | |
self.config = config | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BertAttention(config) | |
self.has_cross_attention = (layer_num >= config.fusion_layer) | |
if self.has_cross_attention: | |
self.layer_num = layer_num | |
self.crossattention = BertAttention( | |
config, is_cross_attention=True) | |
# sparse params | |
self.token_keep_rate = token_keep_rate | |
self.token_keep_strategy = config.token_keep_strategy | |
self.encoder_num_cls_tokens = 1 # multiple cls tokens | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def sparsify(self, x, attn, mask=None): | |
x_cls, x_ = x[:, :self.encoder_num_cls_tokens], x[:, self.encoder_num_cls_tokens:] | |
assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]" | |
left_tokens = math.ceil(self.token_keep_rate * x_.size(1)) | |
if len(attn.shape) == 4: | |
attn = attn.mean(1) # pool over attention heads | |
if self.token_keep_strategy == 'cls_attn': | |
cls_attn = attn[:, 0, self.encoder_num_cls_tokens:] | |
_, idx = torch.topk(cls_attn, left_tokens, dim=1) # [B, left_tokens] | |
elif self.token_keep_strategy == 'avg_attn': | |
avg_attn = attn.mean(1)[:, self.encoder_num_cls_tokens:] | |
_, idx = torch.topk(avg_attn, left_tokens, dim=1) # [B, left_tokens] | |
elif self.token_keep_strategy == 'random': | |
rand = torch.rand(x_.shape[:2], device=x_.device) | |
_, idx = torch.topk(rand, left_tokens, dim=1) # [B, left_tokens] | |
else: | |
raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented") | |
idx, _ = torch.sort(idx, dim=1) | |
index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) # [B, left_tokens, C] | |
outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous() | |
if mask is not None: | |
mask_cls, mask_ = mask[..., :self.encoder_num_cls_tokens], mask[..., self.encoder_num_cls_tokens:] | |
index = idx.unsqueeze(1).unsqueeze(1) # [B, 1, 1, left_tokens] | |
mask = torch.cat((mask_cls, mask_.gather(-1, index)), dim=-1).contiguous() | |
return outputs, mask, idx | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[: | |
2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) # (context_layer, attention_probs, attention_scores, past_key_value,) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
if self.has_cross_attention: | |
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers" | |
output_attentions = (output_attentions or self.token_keep_rate < 1) | |
if type(encoder_hidden_states) == list: | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states[( | |
self.layer_num-self.config.fusion_layer) % len(encoder_hidden_states)], | |
encoder_attention_mask[( | |
self.layer_num-self.config.fusion_layer) % len(encoder_hidden_states)], | |
output_attentions=output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:-1] | |
else: | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions=output_attentions, | |
) # (context_layer, attention_probs, attention_scores, past_key_value,) | |
attention_output = cross_attention_outputs[0] | |
# add cross attentions if we output attention weights | |
outputs = outputs + cross_attention_outputs[1:-1] | |
# node sparsification | |
if self.token_keep_rate < 1: | |
encoder_hidden_states, encoder_attention_mask, token_keep_idx = self.sparsify( | |
encoder_hidden_states, cross_attention_outputs[1], encoder_attention_mask) | |
outputs = outputs + (encoder_hidden_states, encoder_attention_mask, token_keep_idx) | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class BertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
# node sparsification | |
token_keep_rate = [1] * config.num_hidden_layers | |
for loc in config.token_drop_loc: | |
token_keep_rate[loc] = config.token_keep_rate | |
self.layer = nn.ModuleList([BertLayer(config, i, token_keep_rate[i]) | |
for i in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
output_token_idx=False, | |
return_dict=True, | |
mode='multi_modal', | |
normalize_attention=True | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions else None | |
all_token_idx = () if output_token_idx else None | |
next_decoder_cache = () if use_cache else None | |
if mode == 'text': | |
start_layer = 0 | |
output_layer = self.config.fusion_layer | |
elif mode == 'fusion': | |
start_layer = self.config.fusion_layer | |
output_layer = self.config.num_hidden_layers | |
elif mode == 'multi_modal': | |
start_layer = 0 | |
output_layer = self.config.num_hidden_layers | |
for i in range(start_layer, output_layer): | |
layer_module = self.layer[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
if use_cache: | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) # (context_layer, attention_probs, attention_scores, past_key_value,) | |
hidden_states = layer_outputs[0] | |
# update visual sequence | |
if mode == 'fusion' and layer_module.token_keep_rate < 1: | |
encoder_hidden_states, encoder_attention_mask, token_idx = layer_outputs[-4:-1] | |
if output_token_idx: | |
all_token_idx = all_token_idx + (token_idx,) | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
# whether to output normalized attention, | |
# note for unnormalized attention, there is a mask added | |
offset = int(normalize_attention) | |
all_self_attentions = all_self_attentions + (layer_outputs[2-offset], ) | |
if hasattr(layer_module, "crossattention"): | |
all_cross_attentions = all_cross_attentions + (layer_outputs[4-offset], ) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BertModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
token_idx=all_token_idx | |
) | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm( | |
config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear( | |
config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class BertOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class BertOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = BertConfig | |
load_tf_weights = load_tf_weights_in_bert | |
base_model_prefix = "bert" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def _init_weights(self, module): | |
""" Initialize the weights """ | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_( | |
mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
class BertForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of :class:`~transformers.BertForPreTraining`. | |
Args: | |
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
(classification) loss. | |
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation | |
before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
seq_relationship_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
BERT_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
BERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.BertTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class BertModel(BertPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in `Attention is | |
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, | |
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an | |
input to the forward pass. | |
""" | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) if add_pooling_layer else None | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor: | |
""" | |
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
Arguments: | |
attention_mask (:obj:`torch.Tensor`): | |
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
input_shape (:obj:`Tuple[int]`): | |
The shape of the input to the model. | |
device: (:obj:`torch.device`): | |
The device of the input to the model. | |
Returns: | |
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. | |
""" | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
# Provided a padding mask of dimensions [batch_size, seq_length] | |
# - if the model is a decoder, apply a causal mask in addition to the padding mask | |
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if is_decoder: | |
batch_size, seq_length = input_shape | |
seq_ids = torch.arange(seq_length, device=device) | |
causal_mask = seq_ids[None, None, :].repeat( | |
batch_size, seq_length, 1) <= seq_ids[None, :, None] | |
# in case past_key_values are used we need to add a prefix ones mask to the causal mask | |
# causal and attention masks must have same type with pytorch version < 1.3 | |
causal_mask = causal_mask.to(attention_mask.dtype) | |
if causal_mask.shape[1] < attention_mask.shape[1]: | |
prefix_seq_len = attention_mask.shape[1] - \ | |
causal_mask.shape[1] | |
causal_mask = torch.cat( | |
[ | |
torch.ones( | |
(batch_size, seq_length, | |
prefix_seq_len), device=device, dtype=causal_mask.dtype | |
), | |
causal_mask, | |
], | |
axis=-1, | |
) | |
extended_attention_mask = causal_mask[:, None, | |
:, :] * attention_mask[:, None, None, :] | |
else: | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | |
input_shape, attention_mask.shape | |
) | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to( | |
dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
output_token_idx=None, | |
return_dict=None, | |
is_decoder=False, | |
mode='multi_modal', | |
normalize_attention=True, | |
): | |
r""" | |
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. | |
use_cache (:obj:`bool`, `optional`): | |
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
decoding (see :obj:`past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if is_decoder: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
else: | |
use_cache = False | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
batch_size, seq_length = input_shape | |
device = input_ids.device | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size, seq_length = input_shape | |
device = inputs_embeds.device | |
elif encoder_embeds is not None: | |
input_shape = encoder_embeds.size()[:-1] | |
batch_size, seq_length = input_shape | |
device = encoder_embeds.device | |
else: | |
raise ValueError( | |
"You have to specify either input_ids or inputs_embeds or encoder_embeds") | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
((batch_size, seq_length + past_key_values_length)), device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros( | |
input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, | |
device, is_decoder) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if encoder_hidden_states is not None: | |
if type(encoder_hidden_states) == list: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size( | |
) | |
else: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = ( | |
encoder_batch_size, encoder_sequence_length) | |
if type(encoder_attention_mask) == list: | |
encoder_extended_attention_mask = [ | |
self.invert_attention_mask(mask) for mask in encoder_attention_mask] | |
elif encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones( | |
encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask( | |
encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = self.invert_attention_mask( | |
encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask( | |
head_mask, self.config.num_hidden_layers) | |
if encoder_embeds is None: | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
else: | |
embedding_output = encoder_embeds | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
output_token_idx=output_token_idx, | |
return_dict=return_dict, | |
mode=mode, | |
normalize_attention=normalize_attention, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler( | |
sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BertModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
token_idx=encoder_outputs.token_idx, | |
) | |
class BertForPreTraining(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertPreTrainingHeads(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
next_sentence_label=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: | |
- 0 indicates sequence B is a continuation of sequence A, | |
- 1 indicates sequence B is a random sequence. | |
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): | |
Used to hide legacy arguments that have been deprecated. | |
Returns: | |
Example:: | |
>>> from transformers import BertTokenizer, BertForPreTraining | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased') | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> prediction_logits = outputs.prediction_logits | |
>>> seq_relationship_logits = outputs.seq_relationship_logits | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output, pooled_output = outputs[:2] | |
prediction_scores, seq_relationship_score = self.cls( | |
sequence_output, pooled_output) | |
total_loss = None | |
if labels is not None and next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct( | |
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
next_sentence_loss = loss_fct( | |
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
total_loss = masked_lm_loss + next_sentence_loss | |
if not return_dict: | |
output = (prediction_scores, seq_relationship_score) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return BertForPreTrainingOutput( | |
loss=total_loss, | |
prediction_logits=prediction_scores, | |
seq_relationship_logits=seq_relationship_score, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertLMHeadModel(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [ | |
r"position_ids", r"predictions.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.cls = BertOnlyMLMHead(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
labels=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
is_decoder=True, | |
reduction='mean', | |
mode='multi_modal', | |
normalize_attention=True, | |
soft_labels=None, | |
alpha=0, | |
return_logits=False, | |
): | |
r""" | |
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are | |
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` | |
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. | |
use_cache (:obj:`bool`, `optional`): | |
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
decoding (see :obj:`past_key_values`). | |
Returns: | |
Example:: | |
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') | |
>>> config = BertConfig.from_pretrained("bert-base-cased") | |
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> prediction_logits = outputs.logits | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
use_cache = False | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
is_decoder=is_decoder, | |
mode=mode, | |
normalize_attention=normalize_attention, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
if return_logits: | |
return prediction_scores[:, :-1, :].contiguous() | |
lm_loss = None | |
if labels is not None: | |
# we are doing next-token prediction; shift prediction scores and input ids by one | |
shifted_prediction_scores = prediction_scores[:, | |
:-1, :].contiguous() | |
labels = labels[:, 1:].contiguous() | |
loss_fct = CrossEntropyLoss(reduction=reduction) | |
lm_loss = loss_fct( | |
shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) | |
if soft_labels is not None: | |
loss_distill = - \ | |
torch.sum(F.log_softmax(shifted_prediction_scores, | |
dim=1)*soft_labels, dim=-1) | |
loss_distill = (loss_distill * (labels != -100)).sum(1) | |
lm_loss = (1-alpha)*lm_loss + alpha*loss_distill | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((lm_loss,) + output) if lm_loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=lm_loss, | |
logits=prediction_scores, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): | |
input_shape = input_ids.shape | |
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
if attention_mask is None: | |
attention_mask = input_ids.new_ones(input_shape) | |
# cut decoder_input_ids if past is used | |
if past is not None: | |
input_ids = input_ids[:, -1:] | |
return { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"past_key_values": past, | |
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), | |
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), | |
"is_decoder": True, | |
} | |
def _reorder_cache(self, past, beam_idx): | |
reordered_past = () | |
for layer_past in past: | |
reordered_past += (tuple(past_state.index_select(0, beam_idx) | |
for past_state in layer_past),) | |
return reordered_past | |
class MaskedLMOutputWithDistill(MaskedLMOutput): | |
loss_aux: Optional[torch.FloatTensor] = None | |
loss_distill: Optional[torch.FloatTensor] = None | |
class BertForMaskedLM(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [ | |
r"position_ids", r"predictions.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.cls = BertOnlyMLMHead(config) | |
self.init_weights() | |
def tie_aux_decoder_weights(self, module, aux_modules): | |
"""Tie decoder weights of all `aux_modules` to `module`, (not bias)""" | |
for m in aux_modules: | |
m.predictions.decoder.weight = module.predictions.decoder.weight | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
is_decoder=False, | |
mode='multi_modal', | |
normalize_attention=True, | |
soft_labels=None, | |
alpha=0, | |
return_logits=False, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_embeds=encoder_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
is_decoder=is_decoder, | |
mode=mode, | |
normalize_attention=normalize_attention | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
if return_logits: | |
return prediction_scores | |
masked_lm_loss = None | |
masked_lm_loss_aux = 0. | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct( | |
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if soft_labels is not None: | |
loss_distill = - \ | |
torch.sum(F.log_softmax(prediction_scores, dim=1) | |
* soft_labels, dim=-1) | |
loss_distill = loss_distill[labels != -100].mean() | |
masked_lm_loss = (1-alpha)*masked_lm_loss + alpha*loss_distill | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
# changed from MaskedLMOutput to MaskedLMOutputWithDistill | |
return MaskedLMOutputWithDistill( | |
loss=masked_lm_loss, | |
loss_aux=masked_lm_loss_aux, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): | |
input_shape = input_ids.shape | |
effective_batch_size = input_shape[0] | |
# add a dummy token | |
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" | |
attention_mask = torch.cat( | |
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) | |
dummy_token = torch.full( | |
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device | |
) | |
input_ids = torch.cat([input_ids, dummy_token], dim=1) | |
return {"input_ids": input_ids, "attention_mask": attention_mask} | |
class BertForNextSentencePrediction(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertOnlyNSPHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
**kwargs | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
(see ``input_ids`` docstring). Indices should be in ``[0, 1]``: | |
- 0 indicates sequence B is a continuation of sequence A, | |
- 1 indicates sequence B is a random sequence. | |
Returns: | |
Example:: | |
>>> from transformers import BertTokenizer, BertForNextSentencePrediction | |
>>> import torch | |
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." | |
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') | |
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) | |
>>> logits = outputs.logits | |
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random | |
""" | |
if "next_sentence_label" in kwargs: | |
warnings.warn( | |
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", | |
FutureWarning, | |
) | |
labels = kwargs.pop("next_sentence_label") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
seq_relationship_scores = self.cls(pooled_output) | |
next_sentence_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
next_sentence_loss = loss_fct( | |
seq_relationship_scores.view(-1, 2), labels.view(-1)) | |
if not return_dict: | |
output = (seq_relationship_scores,) + outputs[2:] | |
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output | |
return NextSentencePredictorOutput( | |
loss=next_sentence_loss, | |
logits=seq_relationship_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForSequenceClassification(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForMultipleChoice(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
:obj:`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1) | |
) if input_ids is not None else None | |
attention_mask = attention_mask.view( | |
-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view( | |
-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1) | |
) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), | |
inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForTokenClassification(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
1]``. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor( | |
loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct( | |
logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BertForQuestionAnswering(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |