File size: 1,665 Bytes
25635a4
 
 
 
 
02b33e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25635a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr

def greet(name):
    return "Hello " + name + "!!"


import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,  BitsAndBytesConfig
from peft import PeftModel, PeftConfig

class InferenceFineTunning:
    def __init__(self, model_path):
        peft_model_id = f"hyang0503/{model_path}"
        config = PeftConfig.from_pretrained(peft_model_id)
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto")
        self.model = PeftModel.from_pretrained(self.model, peft_model_id)
        
        # self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
        self.tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.model.eval()

    def generate(self, q): # 실습 노트북과 내용 다름
        outputs = self.model.generate(
            **self.tokenizer(
                f"### 질문: {q}\n\n### 답변:",
                return_tensors='pt',
                return_token_type_ids=False
            ).to("cuda"),
            max_new_tokens=256,
            early_stopping=True,
            do_sample=True,
            eos_token_id=2,
        )
        print(self.tokenizer.decode(outputs[0]))
ifg = InferenceFineTunning("qlora-koalpaca")
iface = gr.Interface(fn=ifg.generate, inputs="text", outputs="text")
iface.launch()