Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import functools | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
from model import Model | |
DESCRIPTION = "# [MobileStyleGAN](https://github.com/bes-dev/MobileStyleGAN.pytorch)" | |
SAMPLE_IMAGE_DIR = "https://huggingface.co/spaces/hysts/MobileStyleGAN/resolve/main/samples" | |
ARTICLE = f"""## Generated images | |
### FFHQ | |
- size: 1024x1024 | |
- seed: 0-99 | |
- truncation: 1.0 | |
![FFHQ]({SAMPLE_IMAGE_DIR}/ffhq.jpg) | |
""" | |
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: | |
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float() | |
def generate_image( | |
seed: int, truncation_psi: float, generator: str, model: nn.Module, device: torch.device | |
) -> np.ndarray: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
z = generate_z(model.mapping_net.style_dim, seed, device) | |
out = model(z, truncation_psi=truncation_psi, generator=generator) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return out[0].cpu().numpy() | |
def load_model(device: torch.device) -> nn.Module: | |
path = hf_hub_download("public-data/MobileStyleGAN", "models/mobilestylegan_ffhq_v2.pth") | |
ckpt = torch.load(path) | |
model = Model() | |
model.load_state_dict(ckpt["state_dict"], strict=False) | |
model.eval() | |
model.to(device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, model.mapping_net.style_dim)).to(device) | |
model(z) | |
return model | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = load_model(device) | |
fn = functools.partial(generate_image, model=model, device=device) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0, randomize=True) | |
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=1.0) | |
generator = gr.Radio(label="Generator", choices=["student", "teacher"], type="value", value="student") | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
result = gr.Image(label="Output", type="numpy") | |
with gr.Row(): | |
gr.Markdown(ARTICLE) | |
run_button.click( | |
fn=fn, | |
inputs=[seed, psi, generator], | |
outputs=result, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |