hysts's picture
hysts HF staff
Update
0264baa
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import shlex
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get("SYSTEM") == "spaces":
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
if not torch.cuda.is_available():
with open("patch-cpu") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
sys.path.insert(0, "stylegan2-pytorch")
from model import Generator
DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) interpolation
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
"""
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt")
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["g_ema"])
model.eval()
model.to(device)
model.latent_avg = checkpoint["latent_avg"].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
def generate_z(z_dim: int, seed: int) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()
@torch.inference_mode()
def generate_image(z: torch.Tensor, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
@torch.inference_mode()
def generate_interpolated_images(
seed0: int,
seed1: int,
num_intermediate: int,
psi0: float,
psi1: float,
randomize_noise: bool,
) -> list[np.ndarray]:
seed0 = int(np.clip(seed0, 0, MAX_SEED))
seed1 = int(np.clip(seed1, 0, MAX_SEED))
z0 = generate_z(model.style_dim, seed0)
z1 = generate_z(model.style_dim, seed1)
z0 = z0.to(device)
z1 = z1.to(device)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
dpsi = (psi1 - psi0) / (num_intermediate + 1)
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
res = []
for z, psi in zip(zs, psis):
out = generate_image(z, psi, randomize_noise)
res.append(out)
return res
examples = [
[29703, 55376, 3, 0.7, 0.7, False],
[34141, 36864, 5, 0.7, 0.7, False],
[74650, 88322, 7, 0.7, 0.7, False],
[84314, 70317410, 9, 0.7, 0.7, False],
[55376, 55376, 5, 0.3, 1.3, False],
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
seed_1 = gr.Slider(label="Seed 1", minimum=0, maximum=MAX_SEED, step=1, value=29703)
seed_2 = gr.Slider(label="Seed 2", minimum=0, maximum=MAX_SEED, step=1, value=55376)
num_intermediate_frames = gr.Slider(
label="Number of Intermediate Frames",
minimum=1,
maximum=21,
step=1,
value=3,
)
psi_1 = gr.Slider(label="Truncation psi 1", minimum=0, maximum=2, step=0.05, value=0.7)
psi_2 = gr.Slider(label="Truncation psi 2", minimum=0, maximum=2, step=0.05, value=0.7)
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Gallery(label="Output")
inputs = [
seed_1,
seed_2,
num_intermediate_frames,
psi_1,
psi_2,
randomize_noise,
]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=result,
fn=generate_interpolated_images,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=generate_interpolated_images,
inputs=inputs,
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()