Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import shlex | |
import subprocess | |
import sys | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
if os.environ.get("SYSTEM") == "spaces": | |
with open("patch") as f: | |
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f) | |
if not torch.cuda.is_available(): | |
with open("patch-cpu") as f: | |
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f) | |
sys.path.insert(0, "stylegan2-pytorch") | |
from model import Generator | |
DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) interpolation | |
Related Apps: | |
- [TADNE](https://huggingface.co/spaces/hysts/TADNE) | |
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer) | |
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector) | |
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru) | |
""" | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def load_model(device: torch.device) -> nn.Module: | |
model = Generator(512, 1024, 4, channel_multiplier=2) | |
path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt") | |
checkpoint = torch.load(path) | |
model.load_state_dict(checkpoint["g_ema"]) | |
model.eval() | |
model.to(device) | |
model.latent_avg = checkpoint["latent_avg"].to(device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, model.style_dim)).to(device) | |
model([z], truncation=0.7, truncation_latent=model.latent_avg) | |
return model | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = load_model(device) | |
def generate_z(z_dim: int, seed: int) -> torch.Tensor: | |
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float() | |
def generate_image(z: torch.Tensor, truncation_psi: float, randomize_noise: bool) -> np.ndarray: | |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return out[0].cpu().numpy() | |
def generate_interpolated_images( | |
seed0: int, | |
seed1: int, | |
num_intermediate: int, | |
psi0: float, | |
psi1: float, | |
randomize_noise: bool, | |
) -> list[np.ndarray]: | |
seed0 = int(np.clip(seed0, 0, MAX_SEED)) | |
seed1 = int(np.clip(seed1, 0, MAX_SEED)) | |
z0 = generate_z(model.style_dim, seed0) | |
z1 = generate_z(model.style_dim, seed1) | |
z0 = z0.to(device) | |
z1 = z1.to(device) | |
vec = z1 - z0 | |
dvec = vec / (num_intermediate + 1) | |
zs = [z0 + dvec * i for i in range(num_intermediate + 2)] | |
dpsi = (psi1 - psi0) / (num_intermediate + 1) | |
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)] | |
res = [] | |
for z, psi in zip(zs, psis): | |
out = generate_image(z, psi, randomize_noise) | |
res.append(out) | |
return res | |
examples = [ | |
[29703, 55376, 3, 0.7, 0.7, False], | |
[34141, 36864, 5, 0.7, 0.7, False], | |
[74650, 88322, 7, 0.7, 0.7, False], | |
[84314, 70317410, 9, 0.7, 0.7, False], | |
[55376, 55376, 5, 0.3, 1.3, False], | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
seed_1 = gr.Slider(label="Seed 1", minimum=0, maximum=MAX_SEED, step=1, value=29703) | |
seed_2 = gr.Slider(label="Seed 2", minimum=0, maximum=MAX_SEED, step=1, value=55376) | |
num_intermediate_frames = gr.Slider( | |
label="Number of Intermediate Frames", | |
minimum=1, | |
maximum=21, | |
step=1, | |
value=3, | |
) | |
psi_1 = gr.Slider(label="Truncation psi 1", minimum=0, maximum=2, step=0.05, value=0.7) | |
psi_2 = gr.Slider(label="Truncation psi 2", minimum=0, maximum=2, step=0.05, value=0.7) | |
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False) | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
result = gr.Gallery(label="Output") | |
inputs = [ | |
seed_1, | |
seed_2, | |
num_intermediate_frames, | |
psi_1, | |
psi_2, | |
randomize_noise, | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=inputs, | |
outputs=result, | |
fn=generate_interpolated_images, | |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", | |
) | |
run_button.click( | |
fn=generate_interpolated_images, | |
inputs=inputs, | |
outputs=result, | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |