Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import functools | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import tarfile | |
if os.getenv("SYSTEM") == "spaces": | |
subprocess.run(shlex.split("pip install git+https://github.com/facebookresearch/[email protected]")) | |
subprocess.run(shlex.split("pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87")) | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import torch | |
from adet.config import get_cfg | |
from detectron2.data.detection_utils import read_image | |
from detectron2.engine.defaults import DefaultPredictor | |
from detectron2.utils.visualizer import Visualizer | |
DESCRIPTION = "# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)" | |
MODEL_REPO = "public-data/Yet-Another-Anime-Segmenter" | |
def load_sample_image_paths() -> list[pathlib.Path]: | |
image_dir = pathlib.Path("images") | |
if not image_dir.exists(): | |
dataset_repo = "hysts/sample-images-TADNE" | |
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset") | |
with tarfile.open(path) as f: | |
f.extractall() | |
return sorted(image_dir.glob("*")) | |
def load_model(device: torch.device) -> DefaultPredictor: | |
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.yaml") | |
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.pth") | |
cfg = get_cfg() | |
cfg.merge_from_file(config_path) | |
cfg.MODEL.WEIGHTS = model_path | |
cfg.MODEL.DEVICE = device.type | |
cfg.freeze() | |
return DefaultPredictor(cfg) | |
def predict( | |
image_path: str, class_score_threshold: float, mask_score_threshold: float, model: DefaultPredictor | |
) -> tuple[np.ndarray, np.ndarray]: | |
model.score_threshold = class_score_threshold | |
model.mask_threshold = mask_score_threshold | |
image = read_image(image_path, format="BGR") | |
preds = model(image) | |
instances = preds["instances"].to("cpu") | |
visualizer = Visualizer(image[:, :, ::-1]) | |
vis = visualizer.draw_instance_predictions(predictions=instances) | |
vis = vis.get_image() | |
masked = image.copy()[:, :, ::-1] | |
mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) | |
masked[mask == 0] = 255 | |
return vis, masked | |
image_paths = load_sample_image_paths() | |
examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths] | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = load_model(device) | |
fn = functools.partial(predict, model=model) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Input", type="filepath") | |
class_score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.1) | |
mask_score_threshold = gr.Slider(label="Mask Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5) | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
result_instances = gr.Image(label="Instances") | |
result_masked = gr.Image(label="Masked") | |
inputs = [image, class_score_threshold, mask_score_threshold] | |
outputs = [result_instances, result_masked] | |
gr.Examples( | |
examples=examples, | |
inputs=inputs, | |
outputs=outputs, | |
fn=fn, | |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", | |
) | |
run_button.click( | |
fn=fn, | |
inputs=inputs, | |
outputs=outputs, | |
api_name="predict", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=15).launch() | |