hysts's picture
hysts HF staff
Update
2b6089a
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import shlex
import subprocess
import tarfile
if os.getenv("SYSTEM") == "spaces":
subprocess.run(shlex.split("pip install git+https://github.com/facebookresearch/[email protected]"))
subprocess.run(shlex.split("pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87"))
import gradio as gr
import huggingface_hub
import numpy as np
import torch
from adet.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
DESCRIPTION = "# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)"
MODEL_REPO = "public-data/Yet-Another-Anime-Segmenter"
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def load_model(device: torch.device) -> DefaultPredictor:
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.yaml")
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.pth")
cfg = get_cfg()
cfg.merge_from_file(config_path)
cfg.MODEL.WEIGHTS = model_path
cfg.MODEL.DEVICE = device.type
cfg.freeze()
return DefaultPredictor(cfg)
def predict(
image_path: str, class_score_threshold: float, mask_score_threshold: float, model: DefaultPredictor
) -> tuple[np.ndarray, np.ndarray]:
model.score_threshold = class_score_threshold
model.mask_threshold = mask_score_threshold
image = read_image(image_path, format="BGR")
preds = model(image)
instances = preds["instances"].to("cpu")
visualizer = Visualizer(image[:, :, ::-1])
vis = visualizer.draw_instance_predictions(predictions=instances)
vis = vis.get_image()
masked = image.copy()[:, :, ::-1]
mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0)
masked[mask == 0] = 255
return vis, masked
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
fn = functools.partial(predict, model=model)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="filepath")
class_score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.1)
mask_score_threshold = gr.Slider(label="Mask Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5)
run_button = gr.Button("Run")
with gr.Column():
result_instances = gr.Image(label="Instances")
result_masked = gr.Image(label="Masked")
inputs = [image, class_score_threshold, mask_score_threshold]
outputs = [result_instances, result_masked]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=inputs,
outputs=outputs,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()