Spaces:
Running
Running
File size: 1,536 Bytes
38f37bc c6df2ea 38f37bc c6df2ea 38f37bc c6df2ea 38f37bc d3223c3 c6df2ea d3223c3 c6df2ea 70b23a5 d3223c3 c6df2ea d3223c3 c6df2ea d3223c3 c6df2ea d3223c3 c6df2ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
import mediapipe as mp
import numpy as np
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
TITLE = "MediaPipe Face Detection"
DESCRIPTION = "https://google.github.io/mediapipe/"
def run(image: np.ndarray, model_selection: int, min_detection_confidence: float) -> np.ndarray:
with mp_face_detection.FaceDetection(
model_selection=model_selection, min_detection_confidence=min_detection_confidence
) as face_detection:
results = face_detection.process(image)
res = image[:, :, ::-1].copy()
if results.detections is not None:
for detection in results.detections:
mp_drawing.draw_detection(res, detection)
return res[:, :, ::-1]
model_types = [
"Short-range model (best for faces within 2 meters)",
"Full-range model (best for faces within 5 meters)",
]
image_paths = sorted(pathlib.Path("images").rglob("*.jpg"))
examples = [[path, model_types[0], 0.5] for path in image_paths]
demo = gr.Interface(
fn=run,
inputs=[
gr.Image(label="Input", type="numpy"),
gr.Radio(label="Model", choices=model_types, type="index", value=model_types[0]),
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5),
],
outputs=gr.Image(label="Output"),
examples=examples,
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue().launch()
|