Spaces:
Running
Running
from __future__ import annotations | |
import pathlib | |
import pickle | |
import sys | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
current_dir = pathlib.Path(__file__).parent | |
submodule_dir = current_dir / "projected_gan" | |
sys.path.insert(0, submodule_dir.as_posix()) | |
class Model: | |
MODEL_NAMES = [ | |
"art_painting", | |
"church", | |
"bedroom", | |
"cityscapes", | |
"clevr", | |
"ffhq", | |
"flowers", | |
"landscape", | |
"pokemon", | |
] | |
def __init__(self): | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
self._download_all_models() | |
self.model_name = self.MODEL_NAMES[3] | |
self.model = self._load_model(self.model_name) | |
def _load_model(self, model_name: str) -> nn.Module: | |
path = hf_hub_download("public-data/projected_gan", f"models/{model_name}.pkl") | |
with open(path, "rb") as f: | |
model = pickle.load(f)["G_ema"] | |
model.eval() | |
model.to(self.device) | |
return model | |
def set_model(self, model_name: str) -> None: | |
if model_name == self.model_name: | |
return | |
self.model_name = model_name | |
self.model = self._load_model(model_name) | |
def _download_all_models(self): | |
for name in self.MODEL_NAMES: | |
self._load_model(name) | |
def generate_z(self, seed: int) -> torch.Tensor: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
z = np.random.RandomState(seed).randn(1, self.model.z_dim) | |
return torch.from_numpy(z).float().to(self.device) | |
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return tensor.cpu().numpy() | |
def generate(self, z: torch.Tensor, label: torch.Tensor, truncation_psi: float) -> torch.Tensor: | |
return self.model(z, label, truncation_psi=truncation_psi) | |
def generate_image(self, seed: int, truncation_psi: float) -> np.ndarray: | |
z = self.generate_z(seed) | |
label = torch.zeros([1, self.model.c_dim], device=self.device) | |
out = self.generate(z, label, truncation_psi) | |
out = self.postprocess(out) | |
return out[0] | |
def set_model_and_generate_image(self, model_name: str, seed: int, truncation_psi: float) -> np.ndarray: | |
self.set_model(model_name) | |
return self.generate_image(seed, truncation_psi) | |