city-dreamer / citydreamer /inference.py
hzxie's picture
Fix some bugs.
28f074f verified
# -*- coding: utf-8 -*-
#
# @File: inference.py
# @Author: Haozhe Xie
# @Date: 2024-03-02 16:30:00
# @Last Modified by: Haozhe Xie
# @Last Modified at: 2024-09-22 10:22:05
# @Email: [email protected]
import copy
import cv2
import logging
import math
import numpy as np
import torch
import citydreamer.extensions.extrude_tensor
import citydreamer.extensions.voxlib
# Global constants
HEIGHTS = {
"ROAD": 4,
"GREEN_LANDS": 8,
"CONSTRUCTION": 10,
"COAST_ZONES": 0,
"ROOF": 1,
}
CLASSES = {
"NULL": 0,
"ROAD": 1,
"BLD_FACADE": 2,
"GREEN_LANDS": 3,
"CONSTRUCTION": 4,
"COAST_ZONES": 5,
"OTHERS": 6,
"BLD_ROOF": 7,
}
# NOTE: ID > 10 are reserved for building instances.
# Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1.
CONSTANTS = {
"BLD_INS_LABEL_MIN": 10,
"LAYOUT_N_CLASSES": 7,
"LAYOUT_VOL_SIZE": 1536,
"BUILDING_VOL_SIZE": 672,
"EXTENDED_VOL_SIZE": 2880,
"LAYOUT_MAX_HEIGHT": 640,
"GES_VFOV": 20,
"GES_IMAGE_HEIGHT": 540,
"GES_IMAGE_WIDTH": 960,
"IMAGE_PADDING": 8,
"N_VOXEL_INTERSECT_SAMPLES": 6,
}
def generate_city(fgm, bgm, hf, seg, cx, cy, radius, altitude, azimuth):
cam_pos = get_orbit_camera_position(radius, altitude, azimuth)
seg, building_stats = get_instance_seg_map(seg)
# Generate latent codes
logging.info("Generating latent codes ...")
bg_z, building_zs = get_latent_codes(
building_stats,
bgm.module.cfg.NETWORK.GANCRAFT.STYLE_DIM,
bgm.output_device,
)
# Generate local image patch of the height field and seg map
part_hf, part_seg = get_part_hf_seg(hf, seg, cx, cy, CONSTANTS["EXTENDED_VOL_SIZE"])
# Generate local image patch of the height field and seg map
part_hf, part_seg = get_part_hf_seg(hf, seg, cx, cy, CONSTANTS["EXTENDED_VOL_SIZE"])
# print(part_hf.shape) # (2880, 2880)
# print(part_seg.shape) # (2880, 2880)
# Recalculate the building positions based on the current patch
_building_stats = get_part_building_stats(part_seg, building_stats, cx, cy)
# Generate the concatenated height field and seg. map tensor
hf_seg = get_hf_seg_tensor(part_hf, part_seg, bgm.output_device)
# print(hf_seg.size()) # torch.Size([1, 8, 2880, 2880])
# Build seg_volume
logging.info("Generating seg volume ...")
seg_volume = get_seg_volume(part_hf, part_seg)
logging.info("Rendering City Image ...")
img = render(
(CONSTANTS["GES_IMAGE_HEIGHT"] // 5, CONSTANTS["GES_IMAGE_WIDTH"] // 5),
seg_volume,
hf_seg,
cam_pos,
bgm,
fgm,
_building_stats,
bg_z,
building_zs,
)
img = ((img.cpu().numpy().squeeze().transpose((1, 2, 0)) / 2 + 0.5) * 255).astype(
np.uint8
)
return img
def get_orbit_camera_position(radius, altitude, azimuth):
cx = CONSTANTS["LAYOUT_VOL_SIZE"] // 2
cy = cx
theta = np.deg2rad(azimuth)
cam_x = cx + radius * math.cos(theta)
cam_y = cy + radius * math.sin(theta)
return {"x": cam_x, "y": cam_y, "z": altitude}
def get_instance_seg_map(seg_map):
# Mapping constructions to buildings
seg_map[seg_map == CLASSES["CONSTRUCTION"]] = CLASSES["BLD_FACADE"]
# Use connected components to get building instances
_, labels, stats, _ = cv2.connectedComponentsWithStats(
(seg_map == CLASSES["BLD_FACADE"]).astype(np.uint8), connectivity=4
)
# Remove non-building instance masks
labels[seg_map != CLASSES["BLD_FACADE"]] = 0
# Building instance mask
building_mask = labels != 0
# Make building instance IDs are even numbers and start from 10
# Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1.
labels = (labels + CONSTANTS["BLD_INS_LABEL_MIN"]) * 2
seg_map[seg_map == CLASSES["BLD_FACADE"]] = 0
seg_map = seg_map * (1 - building_mask) + labels * building_mask
assert np.max(labels) < 2147483648
return seg_map.astype(np.int32), stats[:, :4]
def get_latent_codes(building_stats, bg_style_dim, output_device):
bg_z = _get_z(output_device, bg_style_dim)
building_zs = {
(i + CONSTANTS["BLD_INS_LABEL_MIN"]) * 2: _get_z(output_device)
for i in range(len(building_stats))
}
return bg_z, building_zs
def _get_z(device, z_dim=256):
if z_dim is None:
return None
return torch.randn(1, z_dim, dtype=torch.float32, device=device)
def get_part_hf_seg(hf, seg, cx, cy, patch_size):
part_hf = _get_image_patch(hf, cx, cy, patch_size)
part_seg = _get_image_patch(seg, cx, cy, patch_size)
assert part_hf.shape == (
patch_size,
patch_size,
), part_hf.shape
assert part_hf.shape == part_seg.shape, part_seg.shape
return part_hf, part_seg
def _get_image_patch(image, cx, cy, patch_size):
sx = cx - patch_size // 2
sy = cy - patch_size // 2
ex = sx + patch_size
ey = sy + patch_size
return image[sy:ey, sx:ex]
def get_part_building_stats(part_seg, building_stats, cx, cy):
_buildings = np.unique(part_seg[part_seg > CONSTANTS["BLD_INS_LABEL_MIN"]])
_building_stats = {}
for b in _buildings:
_b = b // 2 - CONSTANTS["BLD_INS_LABEL_MIN"]
_building_stats[b] = [
building_stats[_b, 1] - cy + building_stats[_b, 3] / 2,
building_stats[_b, 0] - cx + building_stats[_b, 2] / 2,
]
return _building_stats
def get_hf_seg_tensor(part_hf, part_seg, output_device):
part_hf = torch.from_numpy(part_hf[None, None, ...]).to(output_device)
part_seg = torch.from_numpy(part_seg[None, None, ...]).to(output_device)
part_hf = part_hf / CONSTANTS["LAYOUT_MAX_HEIGHT"]
part_seg = _masks_to_onehots(part_seg[:, 0, :, :], CONSTANTS["LAYOUT_N_CLASSES"])
return torch.cat([part_hf, part_seg], dim=1)
def _masks_to_onehots(masks, n_class, ignored_classes=[]):
b, h, w = masks.shape
n_class_actual = n_class - len(ignored_classes)
one_hot_masks = torch.zeros(
(b, n_class_actual, h, w), dtype=torch.float32, device=masks.device
)
n_class_cnt = 0
for i in range(n_class):
if i not in ignored_classes:
one_hot_masks[:, n_class_cnt] = masks == i
n_class_cnt += 1
return one_hot_masks
def get_seg_volume(part_hf, part_seg):
tensor_extruder = citydreamer.extensions.extrude_tensor.TensorExtruder(
CONSTANTS["LAYOUT_MAX_HEIGHT"]
)
if part_hf.shape == (
CONSTANTS["EXTENDED_VOL_SIZE"],
CONSTANTS["EXTENDED_VOL_SIZE"],
):
part_hf = part_hf[
CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"],
CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"],
]
# print(part_hf.shape) # torch.Size([1, 8, 1536, 1536])
part_seg = part_seg[
CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"],
CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"],
]
# print(part_seg.shape) # torch.Size([1, 8, 1536, 1536])
assert part_hf.shape == (
CONSTANTS["LAYOUT_VOL_SIZE"],
CONSTANTS["LAYOUT_VOL_SIZE"],
)
assert part_hf.shape == part_seg.shape, part_seg.shape
seg_volume = tensor_extruder(
torch.from_numpy(part_seg[None, None, ...]).cuda(),
torch.from_numpy(part_hf[None, None, ...]).cuda(),
).squeeze()
logging.debug("The shape of SegVolume: %s" % (seg_volume.size(),))
# Change the top-level voxel of the "Building Facade" to "Building Roof"
roof_seg_map = part_seg.copy()
non_roof_msk = part_seg <= CONSTANTS["BLD_INS_LABEL_MIN"]
# Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1.
roof_seg_map = roof_seg_map - 1
roof_seg_map[non_roof_msk] = 0
for rh in range(1, HEIGHTS["ROOF"] + 1):
seg_volume = seg_volume.scatter_(
dim=2,
index=torch.from_numpy(part_hf[..., None] + rh).long().cuda(),
src=torch.from_numpy(roof_seg_map[..., None]).cuda(),
)
# print(seg_volume.size()) # torch.Size([1536, 1536, 640])
return seg_volume
def get_voxel_intersection_perspective(seg_volume, camera_location):
CAMERA_FOCAL = (
CONSTANTS["GES_IMAGE_HEIGHT"] / 2 / np.tan(np.deg2rad(CONSTANTS["GES_VFOV"]))
)
# print(seg_volume.size()) # torch.Size([1536, 1536, 640])
camera_target = {
"x": seg_volume.size(1) // 2 - 1,
"y": seg_volume.size(0) // 2 - 1,
}
cam_origin = torch.tensor(
[
camera_location["y"],
camera_location["x"],
camera_location["z"],
],
dtype=torch.float32,
device=seg_volume.device,
)
(
voxel_id,
depth2,
raydirs,
) = citydreamer.extensions.voxlib.ray_voxel_intersection_perspective(
seg_volume,
cam_origin,
torch.tensor(
[
camera_target["y"] - camera_location["y"],
camera_target["x"] - camera_location["x"],
-camera_location["z"],
],
dtype=torch.float32,
device=seg_volume.device,
),
torch.tensor([0, 0, 1], dtype=torch.float32),
CAMERA_FOCAL * 2.06,
[
(CONSTANTS["GES_IMAGE_HEIGHT"] - 1) / 2.0,
(CONSTANTS["GES_IMAGE_WIDTH"] - 1) / 2.0,
],
[CONSTANTS["GES_IMAGE_HEIGHT"], CONSTANTS["GES_IMAGE_WIDTH"]],
CONSTANTS["N_VOXEL_INTERSECT_SAMPLES"],
)
return (
voxel_id.unsqueeze(dim=0),
depth2.permute(1, 2, 0, 3, 4).unsqueeze(dim=0),
raydirs.unsqueeze(dim=0),
cam_origin.unsqueeze(dim=0),
)
def _get_pad_img_bbox(sx, ex, sy, ey):
psx = sx - CONSTANTS["IMAGE_PADDING"] if sx != 0 else 0
psy = sy - CONSTANTS["IMAGE_PADDING"] if sy != 0 else 0
pex = (
ex + CONSTANTS["IMAGE_PADDING"]
if ex != CONSTANTS["GES_IMAGE_WIDTH"]
else CONSTANTS["GES_IMAGE_WIDTH"]
)
pey = (
ey + CONSTANTS["IMAGE_PADDING"]
if ey != CONSTANTS["GES_IMAGE_HEIGHT"]
else CONSTANTS["GES_IMAGE_HEIGHT"]
)
return psx, pex, psy, pey
def _get_img_without_pad(img, sx, ex, sy, ey, psx, pex, psy, pey):
if CONSTANTS["IMAGE_PADDING"] == 0:
return img
return img[
:,
:,
sy - psy : ey - pey if ey != pey else ey,
sx - psx : ex - pex if ex != pex else ex,
]
def render_bg(
patch_size, gancraft_bg, hf_seg, voxel_id, depth2, raydirs, cam_origin, z
):
assert hf_seg.size(2) == CONSTANTS["EXTENDED_VOL_SIZE"]
assert hf_seg.size(3) == CONSTANTS["EXTENDED_VOL_SIZE"]
hf_seg = hf_seg[
:,
:,
CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"],
CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"],
]
assert hf_seg.size(2) == CONSTANTS["LAYOUT_VOL_SIZE"]
assert hf_seg.size(3) == CONSTANTS["LAYOUT_VOL_SIZE"]
# Fix: operator torchvision::nms does not exist
import torchvision
blurrer = torchvision.transforms.GaussianBlur(kernel_size=3, sigma=(2, 2))
_voxel_id = copy.deepcopy(voxel_id)
_voxel_id[voxel_id >= CONSTANTS["BLD_INS_LABEL_MIN"]] = CLASSES["BLD_FACADE"]
assert (_voxel_id < CONSTANTS["LAYOUT_N_CLASSES"]).all()
bg_img = torch.zeros(
1,
3,
CONSTANTS["GES_IMAGE_HEIGHT"],
CONSTANTS["GES_IMAGE_WIDTH"],
dtype=torch.float32,
device=gancraft_bg.output_device,
)
# Render background patches by patch to avoid OOM
for i in range(CONSTANTS["GES_IMAGE_HEIGHT"] // patch_size[0]):
for j in range(CONSTANTS["GES_IMAGE_WIDTH"] // patch_size[1]):
sy, sx = i * patch_size[0], j * patch_size[1]
ey, ex = sy + patch_size[0], sx + patch_size[1]
psx, pex, psy, pey = _get_pad_img_bbox(sx, ex, sy, ey)
output_bg = gancraft_bg(
hf_seg=hf_seg,
voxel_id=_voxel_id[:, psy:pey, psx:pex],
depth2=depth2[:, psy:pey, psx:pex],
raydirs=raydirs[:, psy:pey, psx:pex],
cam_origin=cam_origin,
building_stats=None,
z=z,
deterministic=True,
)
# Make road blurry
road_mask = (
(_voxel_id[:, None, psy:pey, psx:pex, 0, 0] == CLASSES["ROAD"])
.repeat(1, 3, 1, 1)
.float()
)
output_bg = blurrer(output_bg) * road_mask + output_bg * (1 - road_mask)
bg_img[:, :, sy:ey, sx:ex] = _get_img_without_pad(
output_bg, sx, ex, sy, ey, psx, pex, psy, pey
)
return bg_img
def render_fg(
patch_size,
gancraft_fg,
building_id,
hf_seg,
voxel_id,
depth2,
raydirs,
cam_origin,
building_stats,
building_z,
):
_voxel_id = copy.deepcopy(voxel_id)
_curr_bld = torch.tensor([building_id, building_id - 1], device=voxel_id.device)
_voxel_id[~torch.isin(_voxel_id, _curr_bld)] = 0
_voxel_id[voxel_id == building_id] = CLASSES["BLD_FACADE"]
_voxel_id[voxel_id == building_id - 1] = CLASSES["BLD_ROOF"]
# assert (_voxel_id < CONSTANTS["LAYOUT_N_CLASSES"]).all()
_hf_seg = copy.deepcopy(hf_seg)
_hf_seg[hf_seg != building_id] = 0
_hf_seg[hf_seg == building_id] = CLASSES["BLD_FACADE"]
_raydirs = copy.deepcopy(raydirs)
_raydirs[_voxel_id[..., 0, 0] == 0] = 0
# Crop the "hf_seg" image using the center of the target building as the reference
cx = CONSTANTS["EXTENDED_VOL_SIZE"] // 2 - int(building_stats[1])
cy = CONSTANTS["EXTENDED_VOL_SIZE"] // 2 - int(building_stats[0])
sx = cx - CONSTANTS["BUILDING_VOL_SIZE"] // 2
ex = cx + CONSTANTS["BUILDING_VOL_SIZE"] // 2
sy = cy - CONSTANTS["BUILDING_VOL_SIZE"] // 2
ey = cy + CONSTANTS["BUILDING_VOL_SIZE"] // 2
_hf_seg = hf_seg[:, :, sy:ey, sx:ex]
fg_img = torch.zeros(
1,
3,
CONSTANTS["GES_IMAGE_HEIGHT"],
CONSTANTS["GES_IMAGE_WIDTH"],
dtype=torch.float32,
device=gancraft_fg.output_device,
)
fg_mask = torch.zeros(
1,
1,
CONSTANTS["GES_IMAGE_HEIGHT"],
CONSTANTS["GES_IMAGE_WIDTH"],
dtype=torch.float32,
device=gancraft_fg.output_device,
)
# Prevent some buildings are out of bound.
# THIS SHOULD NEVER HAPPEN AGAIN.
# if (
# _hf_seg.size(2) != CONSTANTS["BUILDING_VOL_SIZE"]
# or _hf_seg.size(3) != CONSTANTS["BUILDING_VOL_SIZE"]
# ):
# return fg_img, fg_mask
# Render foreground patches by patch to avoid OOM
for i in range(CONSTANTS["GES_IMAGE_HEIGHT"] // patch_size[0]):
for j in range(CONSTANTS["GES_IMAGE_WIDTH"] // patch_size[1]):
sy, sx = i * patch_size[0], j * patch_size[1]
ey, ex = sy + patch_size[0], sx + patch_size[1]
psx, pex, psy, pey = _get_pad_img_bbox(sx, ex, sy, ey)
if torch.count_nonzero(_raydirs[:, sy:ey, sx:ex]) > 0:
output_fg = gancraft_fg(
_hf_seg,
_voxel_id[:, psy:pey, psx:pex],
depth2[:, psy:pey, psx:pex],
_raydirs[:, psy:pey, psx:pex],
cam_origin,
building_stats=torch.from_numpy(np.array(building_stats)).unsqueeze(
dim=0
),
z=building_z,
deterministic=True,
)
facade_mask = (
voxel_id[:, sy:ey, sx:ex, 0, 0] == building_id
).unsqueeze(dim=1)
roof_mask = (
voxel_id[:, sy:ey, sx:ex, 0, 0] == building_id - 1
).unsqueeze(dim=1)
facade_img = facade_mask * _get_img_without_pad(
output_fg, sx, ex, sy, ey, psx, pex, psy, pey
)
# Make roof blurry
# output_fg = F.interpolate(
# F.interpolate(output_fg * 0.8, scale_factor=0.75),
# scale_factor=4 / 3,
# ),
roof_img = roof_mask * _get_img_without_pad(
output_fg,
sx,
ex,
sy,
ey,
psx,
pex,
psy,
pey,
)
fg_mask[:, :, sy:ey, sx:ex] = torch.logical_or(facade_mask, roof_mask)
fg_img[:, :, sy:ey, sx:ex] = (
facade_img * facade_mask + roof_img * roof_mask
)
return fg_img, fg_mask
def render(
patch_size,
seg_volume,
hf_seg,
cam_pos,
gancraft_bg,
gancraft_fg,
building_stats,
bg_z,
building_zs,
):
voxel_id, depth2, raydirs, cam_origin = get_voxel_intersection_perspective(
seg_volume, cam_pos
)
buildings = torch.unique(voxel_id[voxel_id > CONSTANTS["BLD_INS_LABEL_MIN"]])
# Remove odd numbers from the list because they are reserved by roofs.
buildings = buildings[buildings % 2 == 0]
with torch.no_grad():
bg_img = render_bg(
patch_size, gancraft_bg, hf_seg, voxel_id, depth2, raydirs, cam_origin, bg_z
)
for b in buildings:
assert b % 2 == 0, "Building Instance ID MUST be an even number."
fg_img, fg_mask = render_fg(
patch_size,
gancraft_fg,
b.item(),
hf_seg,
voxel_id,
depth2,
raydirs,
cam_origin,
building_stats[b.item()],
building_zs[b.item()],
)
bg_img = bg_img * (1 - fg_mask) + fg_img * fg_mask
return bg_img