Spaces:
Running
on
L4
Running
on
L4
# -*- coding: utf-8 -*- | |
# | |
# @File: gancraft.py | |
# @Author: Haozhe Xie | |
# @Date: 2023-04-12 19:53:21 | |
# @Last Modified by: Haozhe Xie | |
# @Last Modified at: 2024-03-03 11:15:36 | |
# @Email: [email protected] | |
# @Ref: https://github.com/FrozenBurning/SceneDreamer | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import citydreamer.extensions.grid_encoder | |
class GanCraftGenerator(torch.nn.Module): | |
def __init__(self, cfg): | |
super(GanCraftGenerator, self).__init__() | |
self.cfg = cfg | |
self.render_net = RenderMLP(cfg) | |
self.denoiser = RenderCNN(cfg) | |
if cfg.NETWORK.GANCRAFT.ENCODER == "GLOBAL": | |
self.encoder = GlobalEncoder(cfg) | |
elif cfg.NETWORK.GANCRAFT.ENCODER == "LOCAL": | |
self.encoder = LocalEncoder(cfg) | |
else: | |
self.encoder = None | |
if ( | |
not cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS | |
and not cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
): | |
raise ValueError( | |
"Either POS_EMD_INCUDE_CORDS or POS_EMD_INCUDE_FEATURES should be True." | |
) | |
if cfg.NETWORK.GANCRAFT.POS_EMD == "HASH_GRID": | |
grid_encoder_in_dim = 3 if cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS else 0 | |
if ( | |
cfg.NETWORK.GANCRAFT.ENCODER in ["GLOBAL", "LOCAL"] | |
and cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
): | |
grid_encoder_in_dim += cfg.NETWORK.GANCRAFT.ENCODER_OUT_DIM | |
self.pos_encoder = citydreamer.extensions.grid_encoder.GridEncoder( | |
in_channels=grid_encoder_in_dim, | |
n_levels=cfg.NETWORK.GANCRAFT.HASH_GRID_N_LEVELS, | |
lvl_channels=cfg.NETWORK.GANCRAFT.HASH_GRID_LEVEL_DIM, | |
desired_resolution=cfg.NETWORK.GANCRAFT.HASH_GRID_RESOLUTION, | |
) | |
elif cfg.NETWORK.GANCRAFT.POS_EMD == "SIN_COS": | |
self.pos_encoder = SinCosEncoder(cfg) | |
def forward( | |
self, | |
hf_seg, | |
voxel_id, | |
depth2, | |
raydirs, | |
cam_origin, | |
building_stats=None, | |
z=None, | |
deterministic=False, | |
): | |
r"""GANcraft Generator forward. | |
Args: | |
hf_seg (N x (1 + M) x H' x W' tensor) : height field + seg map, where M is the number of classes. | |
voxel_id (N x H x W x max_samples x 1 tensor): IDs of intersected tensors along each ray. | |
depth2 (N x H x W x 2 x max_samples x 1 tensor): Depths of entrance and exit points for each ray-voxel | |
intersection. | |
raydirs (N x H x W x 1 x 3 tensor): The direction of each ray. | |
cam_origin (N x 3 tensor): Camera origins. | |
building_stats (N x 5 tensor): The dy, dx, h, w, ID of the target building. (Only used in building mode) | |
z (N x STYLE_DIM tensor): The style vector. | |
deterministic (bool): Whether to use equal-distance sampling instead of random stratified sampling. | |
Returns: | |
fake_images (N x 3 x H x W tensor): fake images | |
""" | |
bs, device = hf_seg.size(0), hf_seg.device | |
if z is None and self.cfg.NETWORK.GANCRAFT.STYLE_DIM is not None: | |
z = torch.randn( | |
bs, | |
self.cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
dtype=torch.float32, | |
device=device, | |
) | |
features = None | |
if self.encoder is not None: | |
features = self.encoder(hf_seg) | |
net_out = self._forward_perpix( | |
features, | |
voxel_id, | |
depth2, | |
raydirs, | |
cam_origin, | |
z, | |
building_stats, | |
deterministic, | |
) | |
fake_images = self._forward_global(net_out, z) | |
return fake_images | |
def _forward_perpix( | |
self, | |
features, | |
voxel_id, | |
depth2, | |
raydirs, | |
cam_origin, | |
z, | |
building_stats=None, | |
deterministic=False, | |
): | |
r"""Sample points along rays, forwarding the per-point MLP and aggregate pixel features | |
Args: | |
features (N x C1 tensor): Local features determined by the current pixel. | |
voxel_id (N x H x W x M x 1 tensor): Voxel ids from ray-voxel intersection test. M: num intersected voxels | |
depth2 (N x H x W x 2 x M x 1 tensor): Depths of entrance and exit points for each ray-voxel intersection. | |
raydirs (N x H x W x 1 x 3 tensor): The direction of each ray. | |
cam_origin (N x 3 tensor): Camera origins. | |
z (N x C3 tensor): Intermediate style vectors. | |
building_stats (N x 4 tensor): The dy, dx, h, w of the target building. (Only used in building mode) | |
deterministic (bool): Whether to use equal-distance sampling instead of random stratified sampling. | |
""" | |
# Generate sky_mask; PE transform on ray direction. | |
with torch.no_grad(): | |
# sky_only_mask: when True, ray hits nothing but sky | |
sky_only_mask = voxel_id[:, :, :, [0], :] == 0 | |
with torch.no_grad(): | |
normalized_cord, new_dists, new_idx = self._get_sampled_coordinates( | |
self.cfg.NETWORK.GANCRAFT.N_SAMPLE_POINTS_PER_RAY, | |
depth2, | |
raydirs, | |
cam_origin, | |
building_stats, | |
deterministic, | |
) | |
# Generate per-sample segmentation label | |
seg_map_bev = torch.gather(voxel_id, -2, new_idx) | |
# print(seg_map_bev.size()) # torch.Size([N, H, W, n_samples + 1, 1]) | |
# In Building Mode, the one more channel is used for building roofs | |
n_classes = ( | |
self.cfg.NETWORK.GANCRAFT.N_CLASSES + 1 | |
if self.cfg.NETWORK.GANCRAFT.BUILDING_MODE | |
else self.cfg.NETWORK.GANCRAFT.N_CLASSES | |
) | |
seg_map_bev_onehot = torch.zeros( | |
[ | |
seg_map_bev.size(0), | |
seg_map_bev.size(1), | |
seg_map_bev.size(2), | |
seg_map_bev.size(3), | |
n_classes, | |
], | |
dtype=torch.float, | |
device=voxel_id.device, | |
) | |
# print(seg_map_bev_onehot.size()) # torch.Size([N, H, W, n_samples + 1, 1]) | |
seg_map_bev_onehot.scatter_(-1, seg_map_bev.long(), 1.0) | |
net_out_s, net_out_c = self._forward_perpix_sub( | |
features, normalized_cord, z, seg_map_bev_onehot | |
) | |
# Blending | |
weights = self._volum_rendering_relu( | |
net_out_s, new_dists * self.cfg.NETWORK.GANCRAFT.DIST_SCALE, dim=-2 | |
) | |
# If a ray exclusively hits the sky (no intersection with the voxels), set its weight to zero. | |
weights = weights * torch.logical_not(sky_only_mask).float() | |
# print(weights.size()) # torch.Size([N, H, W, n_samples + 1, 1]) | |
rgbs = torch.clamp(net_out_c, -1, 1) + 1 | |
net_out = torch.sum(weights * rgbs, dim=-2, keepdim=True) | |
net_out = net_out.squeeze(-2) | |
net_out = net_out - 1 | |
return net_out | |
def _get_sampled_coordinates( | |
self, | |
n_samples, | |
depth2, | |
raydirs, | |
cam_origin, | |
building_stats=None, | |
deterministic=False, | |
): | |
# Random sample points along the ray | |
rand_depth, new_dists, new_idx = self._sample_depth_batched( | |
depth2, | |
n_samples + 1, | |
deterministic=deterministic, | |
use_box_boundaries=False, | |
sample_depth=3, | |
) | |
nan_mask = torch.isnan(rand_depth) | |
inf_mask = torch.isinf(rand_depth) | |
rand_depth[nan_mask | inf_mask] = 0.0 | |
world_coord = raydirs * rand_depth + cam_origin[:, None, None, None, :] | |
# assert worldcoord2.shape[-1] == 3 | |
if self.cfg.NETWORK.GANCRAFT.BUILDING_MODE: | |
assert building_stats is not None | |
# Make the building object-centric | |
building_stats = building_stats[:, None, None, None, :].repeat( | |
1, world_coord.size(1), world_coord.size(2), world_coord.size(3), 1 | |
) | |
world_coord[..., 0] -= ( | |
building_stats[..., 0] + self.cfg.NETWORK.GANCRAFT.CENTER_OFFSET | |
) | |
world_coord[..., 1] -= ( | |
building_stats[..., 1] + self.cfg.NETWORK.GANCRAFT.CENTER_OFFSET | |
) | |
# TODO: Fix non-building rays | |
zero_rd_mask = raydirs.repeat(1, 1, 1, n_samples, 1) | |
world_coord[zero_rd_mask == 0] = 0 | |
normalized_cord = self._get_normalized_coordinates(world_coord) | |
return normalized_cord, new_dists, new_idx | |
def _get_normalized_coordinates(self, world_coord): | |
delimeter = torch.tensor( | |
self.cfg.NETWORK.GANCRAFT.NORMALIZE_DELIMETER, device=world_coord.device | |
) | |
normalized_cord = world_coord / delimeter * 2 - 1 | |
# TODO: Temporary fix | |
normalized_cord[normalized_cord > 1] = 1 | |
normalized_cord[normalized_cord < -1] = -1 | |
# assert (normalized_cord <= 1).all() | |
# assert (normalized_cord >= -1).all() | |
# print(delimeter, torch.min(normalized_cord), torch.max(normalized_cord)) | |
# print(normalized_cord.size()) # torch.Size([1, 192, 192, 24, 3]) | |
return normalized_cord | |
def _sample_depth_batched( | |
self, | |
depth2, | |
n_samples, | |
deterministic=False, | |
use_box_boundaries=True, | |
sample_depth=3, | |
): | |
r"""Make best effort to sample points within the same distance for every ray. | |
Exception: When there is not enough voxel. | |
Args: | |
depth2 (N x H x W x 2 x M x 1 tensor): | |
- N: Batch. | |
- H, W: Height, Width. | |
- 2: Entrance / exit depth for each intersected box. | |
- M: Number of intersected boxes along the ray. | |
- 1: One extra dim for consistent tensor dims. | |
depth2 can include NaNs. | |
deterministic (bool): Whether to use equal-distance sampling instead of random stratified sampling. | |
use_box_boundaries (bool): Whether to add the entrance / exit points into the sample. | |
sample_depth (float): Truncate the ray when it travels further than sample_depth inside voxels. | |
""" | |
bs = depth2.size(0) | |
dim0 = depth2.size(1) | |
dim1 = depth2.size(2) | |
dists = depth2[:, :, :, 1] - depth2[:, :, :, 0] | |
dists[torch.isnan(dists)] = 0 | |
# print(dists.size()) # torch.Size([N, H, W, M, 1]) | |
accu_depth = torch.cumsum(dists, dim=-2) | |
# print(accu_depth.size()) # torch.Size([N, H, W, M, 1]) | |
total_depth = accu_depth[..., [-1], :] | |
# print(total_depth.size()) # torch.Size([N, H, W, 1, 1]) | |
total_depth = torch.clamp(total_depth, None, sample_depth) | |
# Ignore out of range box boundaries. Fill with random samples. | |
if use_box_boundaries: | |
boundary_samples = accu_depth.clone().detach() | |
boundary_samples_filler = torch.rand_like(boundary_samples) * total_depth | |
bad_mask = (accu_depth > sample_depth) | (dists == 0) | |
boundary_samples[bad_mask] = boundary_samples_filler[bad_mask] | |
rand_shape = [bs, dim0, dim1, n_samples, 1] | |
if deterministic: | |
rand_samples = torch.empty( | |
rand_shape, dtype=total_depth.dtype, device=total_depth.device | |
) | |
rand_samples[..., :, 0] = torch.linspace(0, 1, n_samples + 2)[1:-1] | |
else: | |
rand_samples = torch.rand( | |
rand_shape, dtype=total_depth.dtype, device=total_depth.device | |
) | |
# Stratified sampling as in NeRF | |
rand_samples = rand_samples / n_samples | |
rand_samples[..., :, 0] += torch.linspace( | |
0, 1, n_samples + 1, device=rand_samples.device | |
)[:-1] | |
rand_samples = rand_samples * total_depth | |
# print(rand_samples.size()) # torch.Size([N, H, W, n_samples, 1]) | |
# Can also include boundaries | |
if use_box_boundaries: | |
rand_samples = torch.cat( | |
[ | |
rand_samples, | |
boundary_samples, | |
torch.zeros( | |
[bs, dim0, dim1, 1, 1], | |
dtype=total_depth.dtype, | |
device=total_depth.device, | |
), | |
], | |
dim=-2, | |
) | |
rand_samples, _ = torch.sort(rand_samples, dim=-2, descending=False) | |
midpoints = (rand_samples[..., 1:, :] + rand_samples[..., :-1, :]) / 2 | |
# print(midpoints.size()) # torch.Size([N, H, W, n_samples, 1]) | |
new_dists = rand_samples[..., 1:, :] - rand_samples[..., :-1, :] | |
# Scatter the random samples back | |
# print(midpoints.unsqueeze(-3).size()) # torch.Size([N, H, W, 1, n_samples, 1]) | |
# print(accu_depth.unsqueeze(-2).size()) # torch.Size([N, H, W, M, 1, 1]) | |
idx = torch.sum(midpoints.unsqueeze(-3) > accu_depth.unsqueeze(-2), dim=-3) | |
# print(idx.shape, idx.max(), idx.min()) # torch.Size([N, H, W, n_samples, 1]) max 5, min 0 | |
depth_deltas = ( | |
depth2[:, :, :, 0, 1:, :] - depth2[:, :, :, 1, :-1, :] | |
) # There might be NaNs! | |
# print(depth_deltas.size()) # torch.Size([N, H, W, M, M - 1, 1]) | |
depth_deltas = torch.cumsum(depth_deltas, dim=-2) | |
depth_deltas = torch.cat( | |
[depth2[:, :, :, 0, [0], :], depth_deltas + depth2[:, :, :, 0, [0], :]], | |
dim=-2, | |
) | |
heads = torch.gather(depth_deltas, -2, idx) | |
# print(heads.size()) # torch.Size([N, H, W, M, 1]) | |
# print(torch.any(torch.isnan(heads))) | |
rand_depth = heads + midpoints | |
# print(rand_depth.size()) # torch.Size([N, H, W, M, n_samples, 1]) | |
return rand_depth, new_dists, idx | |
def _volum_rendering_relu(self, sigma, dists, dim=2): | |
free_energy = F.relu(sigma) * dists | |
a = 1 - torch.exp(-free_energy.float()) # probability of it is not empty here | |
b = torch.exp( | |
-self._cumsum_exclusive(free_energy, dim=dim) | |
) # probability of everything is empty up to now | |
return a * b # probability of the ray hits something here | |
def _cumsum_exclusive(self, tensor, dim): | |
cumsum = torch.cumsum(tensor, dim) | |
cumsum = torch.roll(cumsum, 1, dim) | |
cumsum.index_fill_( | |
dim, torch.tensor([0], dtype=torch.long, device=tensor.device), 0 | |
) | |
return cumsum | |
def _forward_perpix_sub(self, features, normalized_cord, z, seg_map_bev_onehot): | |
r"""Forwarding the MLP. | |
Args: | |
features (N x C1 x ...? tensor): Local features determined by the current pixel. | |
normalized_coord (N x H x W x L x 3 tensor): 3D world coordinates of sampled points. L is number of samples; N is batch size, always 1. | |
z (N x C3 tensor): Intermediate style vectors. | |
seg_map_bev_onehot (N x H x W x L x C4): One-hot segmentation maps. | |
Returns: | |
net_out_s (N x H x W x L x 1 tensor): Opacities. | |
net_out_c (N x H x W x L x C5 tensor): Color embeddings. | |
""" | |
feature_in = torch.empty( | |
normalized_cord.size(0), | |
normalized_cord.size(1), | |
normalized_cord.size(2), | |
normalized_cord.size(3), | |
0, | |
device=normalized_cord.device, | |
) | |
if self.cfg.NETWORK.GANCRAFT.ENCODER == "GLOBAL": | |
# print(features.size()) # torch.Size([N, ENCODER_OUT_DIM]) | |
feature_in = features[:, None, None, None, :].repeat( | |
1, | |
normalized_cord.size(1), | |
normalized_cord.size(2), | |
normalized_cord.size(3), | |
1, | |
) | |
elif self.cfg.NETWORK.GANCRAFT.ENCODER == "LOCAL": | |
# print(features.size()) # torch.Size([N, ENCODER_OUT_DIM - 1, H, W]) | |
# print(world_coord.size()) # torch.Size([N, H, W, L, 3]) | |
# NOTE: grid specifies the sampling pixel locations normalized by the input spatial | |
# dimensions. Therefore, it should have most values in the range of [-1, 1]. | |
grid = normalized_cord.permute(0, 3, 1, 2, 4).reshape( | |
-1, normalized_cord.size(1), normalized_cord.size(2), 3 | |
) | |
# print(grid.size()) # torch.Size([N * L, H, W, 3]) | |
feature_in = F.grid_sample( | |
features.repeat(grid.size(0), 1, 1, 1), | |
grid[..., [1, 0]], | |
align_corners=False, | |
) | |
# print(feature_in.size()) # torch.Size([N * L, ENCODER_OUT_DIM - 1, H, W]) | |
feature_in = feature_in.reshape( | |
normalized_cord.size(0), | |
normalized_cord.size(3), | |
feature_in.size(1), | |
feature_in.size(2), | |
feature_in.size(3), | |
).permute(0, 3, 4, 1, 2) | |
# print(feature_in.size()) # torch.Size([N, H, W, L, ENCODER_OUT_DIM - 1]) | |
feature_in = torch.cat([feature_in, normalized_cord[..., [2]]], dim=-1) | |
# print(feature_in.size()) # torch.Size([N, H, W, L, ENCODER_OUT_DIM]) | |
if self.cfg.NETWORK.GANCRAFT.POS_EMD in ["HASH_GRID", "SIN_COS"]: | |
if ( | |
self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS | |
and self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
): | |
feature_in = self.pos_encoder( | |
torch.cat([normalized_cord, feature_in], dim=-1) | |
) | |
elif self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS: | |
feature_in = torch.cat( | |
[self.pos_encoder(normalized_cord), feature_in], dim=-1 | |
) | |
elif self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES: | |
# Ignore normalized_cord here to make it decoupled with coordinates | |
feature_in = torch.cat([self.pos_encoder(feature_in)], dim=-1) | |
else: | |
if ( | |
self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS | |
and self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
): | |
feature_in = torch.cat([normalized_cord, feature_in], dim=-1) | |
elif self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS: | |
feature_in = normalized_cord | |
elif self.cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES: | |
feature_in = feature_in | |
net_out_s, net_out_c = self.render_net(feature_in, z, seg_map_bev_onehot) | |
return net_out_s, net_out_c | |
def _forward_global(self, net_out, z): | |
r"""Forward the CNN | |
Args: | |
net_out (N x C5 x H x W tensor): Intermediate feature maps. | |
z (N x C3 tensor): Intermediate style vectors. | |
Returns: | |
fake_images (N x 3 x H x W tensor): Output image. | |
""" | |
fake_images = net_out.permute(0, 3, 1, 2).contiguous() | |
if self.denoiser is not None: | |
fake_images = self.denoiser(fake_images, z) | |
fake_images = torch.tanh(fake_images) | |
return fake_images | |
class GlobalEncoder(torch.nn.Module): | |
def __init__(self, cfg): | |
super(GlobalEncoder, self).__init__() | |
n_classes = cfg.NETWORK.GANCRAFT.N_CLASSES | |
self.hf_conv = torch.nn.Conv2d(1, 8, kernel_size=3, stride=2, padding=1) | |
self.seg_conv = torch.nn.Conv2d( | |
n_classes, | |
8, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
) | |
conv_blocks = [] | |
cur_hidden_channels = 16 | |
for _ in range(1, cfg.NETWORK.GANCRAFT.GLOBAL_ENCODER_N_BLOCKS): | |
conv_blocks.append( | |
SRTConvBlock(in_channels=cur_hidden_channels, out_channels=None) | |
) | |
cur_hidden_channels *= 2 | |
self.conv_blocks = torch.nn.Sequential(*conv_blocks) | |
self.fc1 = torch.nn.Linear(cur_hidden_channels, 16) | |
self.fc2 = torch.nn.Linear(16, cfg.NETWORK.GANCRAFT.ENCODER_OUT_DIM) | |
self.act = torch.nn.LeakyReLU(0.2) | |
def forward(self, hf_seg): | |
hf = self.act(self.hf_conv(hf_seg[:, [0]])) | |
seg = self.act(self.seg_conv(hf_seg[:, 1:])) | |
out = torch.cat([hf, seg], dim=1) | |
for layer in self.conv_blocks: | |
out = self.act(layer(out)) | |
out = out.permute(0, 2, 3, 1) | |
out = torch.mean(out.reshape(out.shape[0], -1, out.shape[-1]), dim=1) | |
cond = self.act(self.fc1(out)) | |
cond = torch.tanh(self.fc2(cond)) | |
return cond | |
class LocalEncoder(torch.nn.Module): | |
def __init__(self, cfg): | |
super(LocalEncoder, self).__init__() | |
n_classes = cfg.NETWORK.GANCRAFT.N_CLASSES | |
self.hf_conv = torch.nn.Conv2d(1, 32, kernel_size=7, stride=2, padding=3) | |
self.seg_conv = torch.nn.Conv2d( | |
n_classes, 32, kernel_size=7, stride=2, padding=3 | |
) | |
if cfg.NETWORK.GANCRAFT.LOCAL_ENCODER_NORM == "BATCH_NORM": | |
self.bn1 = torch.nn.BatchNorm2d(64) | |
elif cfg.NETWORK.GANCRAFT.LOCAL_ENCODER_NORM == "GROUP_NORM": | |
self.bn1 = torch.nn.GroupNorm(32, 64) | |
else: | |
raise ValueError( | |
"Unknown normalization: %s" % cfg.NETWORK.GANCRAFT.LOCAL_ENCODER_NORM | |
) | |
self.conv2 = ResConvBlock(64, 128, cfg.NETWORK.GANCRAFT.LOCAL_ENCODER_NORM) | |
self.conv3 = ResConvBlock(128, 256, cfg.NETWORK.GANCRAFT.LOCAL_ENCODER_NORM) | |
self.conv4 = ResConvBlock(256, 512, cfg.NETWORK.GANCRAFT.LOCAL_ENCODER_NORM) | |
self.dconv5 = torch.nn.ConvTranspose2d( | |
512, 128, kernel_size=4, stride=2, padding=1 | |
) | |
self.dconv6 = torch.nn.ConvTranspose2d( | |
128, 32, kernel_size=4, stride=2, padding=1 | |
) | |
self.dconv7 = torch.nn.Conv2d( | |
32, cfg.NETWORK.GANCRAFT.ENCODER_OUT_DIM - 1, kernel_size=1 | |
) | |
def forward(self, hf_seg): | |
hf = self.hf_conv(hf_seg[:, [0]]) | |
seg = self.seg_conv(hf_seg[:, 1:]) | |
out = F.relu(self.bn1(torch.cat([hf, seg], dim=1)), inplace=True) | |
# print(out.size()) # torch.Size([N, 64, H/2, W/2]) | |
out = F.avg_pool2d(self.conv2(out), 2, stride=2) | |
# print(out.size()) # torch.Size([N, 128, H/4, W/4]) | |
out = self.conv3(out) | |
# print(out.size()) # torch.Size([N, 256, H/4, W/4]) | |
out = self.conv4(out) | |
# print(out.size()) # torch.Size([N, 512, H/4, W/4]) | |
out = self.dconv5(out) | |
# print(out.size()) # torch.Size([N, 128, H/2, W/2]) | |
out = self.dconv6(out) | |
# print(out.size()) # torch.Size([N, 32, H, W]) | |
out = self.dconv7(out) | |
# print(out.size()) # torch.Size([N, OUT_DIM - 1, H, W]) | |
return torch.tanh(out) | |
class SinCosEncoder(torch.nn.Module): | |
def __init__(self, cfg): | |
super(SinCosEncoder, self).__init__() | |
self.freq_bands = 2.0 ** torch.linspace( | |
0, | |
cfg.NETWORK.GANCRAFT.SIN_COS_FREQ_BENDS - 1, | |
steps=cfg.NETWORK.GANCRAFT.SIN_COS_FREQ_BENDS, | |
) | |
def forward(self, features): | |
cord_sin = torch.cat( | |
[torch.sin(features * fb) for fb in self.freq_bands], dim=-1 | |
) | |
cord_cos = torch.cat( | |
[torch.cos(features * fb) for fb in self.freq_bands], dim=-1 | |
) | |
return torch.cat([cord_sin, cord_cos], dim=-1) | |
class RenderMLP(torch.nn.Module): | |
r"""MLP with affine modulation.""" | |
def __init__(self, cfg): | |
super(RenderMLP, self).__init__() | |
in_dim = 0 | |
f_dim = ( | |
cfg.NETWORK.GANCRAFT.ENCODER_OUT_DIM | |
if cfg.NETWORK.GANCRAFT.ENCODER in ["GLOBAL", "LOCAL"] | |
else 0 | |
) | |
if cfg.NETWORK.GANCRAFT.POS_EMD == "HASH_GRID": | |
in_dim = ( | |
cfg.NETWORK.GANCRAFT.HASH_GRID_N_LEVELS | |
* cfg.NETWORK.GANCRAFT.HASH_GRID_LEVEL_DIM | |
) | |
in_dim += ( | |
f_dim | |
if cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS | |
and not cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
else 0 | |
) | |
elif cfg.NETWORK.GANCRAFT.POS_EMD == "SIN_COS": | |
if ( | |
cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS | |
and cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
): | |
in_dim = (3 + f_dim) * cfg.NETWORK.GANCRAFT.SIN_COS_FREQ_BENDS * 2 | |
elif cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS: | |
in_dim = 3 * cfg.NETWORK.GANCRAFT.SIN_COS_FREQ_BENDS * 2 + f_dim | |
elif cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES: | |
in_dim = f_dim * cfg.NETWORK.GANCRAFT.SIN_COS_FREQ_BENDS * 2 | |
else: | |
if ( | |
cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS | |
and cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES | |
): | |
in_dim = 3 + f_dim | |
elif cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_CORDS: | |
in_dim = 3 | |
elif cfg.NETWORK.GANCRAFT.POS_EMD_INCUDE_FEATURES: | |
in_dim = f_dim | |
self.fc_m_a = torch.nn.Linear( | |
( | |
cfg.NETWORK.GANCRAFT.N_CLASSES + 1 | |
if cfg.NETWORK.GANCRAFT.BUILDING_MODE | |
else cfg.NETWORK.GANCRAFT.N_CLASSES | |
), | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
bias=False, | |
) | |
self.fc_1 = torch.nn.Linear( | |
in_dim, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
self.fc_2 = ( | |
ModLinear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
bias=False, | |
mod_bias=True, | |
output_mode=True, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
) | |
self.fc_3 = ( | |
ModLinear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
bias=False, | |
mod_bias=True, | |
output_mode=True, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
) | |
self.fc_4 = ( | |
ModLinear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
bias=False, | |
mod_bias=True, | |
output_mode=True, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
) | |
self.fc_sigma = ( | |
torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_OUT_DIM_SIGMA, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_OUT_DIM_SIGMA, | |
) | |
) | |
self.fc_5 = ( | |
ModLinear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
bias=False, | |
mod_bias=True, | |
output_mode=True, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
) | |
self.fc_6 = ( | |
ModLinear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
bias=False, | |
mod_bias=True, | |
output_mode=True, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
) | |
self.fc_out_c = ( | |
torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_OUT_DIM_COLOR, | |
) | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None | |
else torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_OUT_DIM_COLOR, | |
) | |
) | |
self.act = torch.nn.LeakyReLU(negative_slope=0.2) | |
def forward(self, x, z, m): | |
r"""Forward network | |
Args: | |
x (N x H x W x M x in_channels tensor): Projected features. | |
z (N x cfg.NETWORK.GANCRAFT.STYLE_DIM tensor): Style codes. | |
m (N x H x W x M x mask_channels tensor): One-hot segmentation maps. | |
""" | |
# b, h, w, n, _ = x.size() | |
if z is not None: | |
z = z[:, None, None, None, :] | |
f = self.fc_1(x) | |
f = f + self.fc_m_a(m) | |
# Common MLP | |
f = self.act(f) | |
f = self.act(self.fc_2(f, z)) if z is not None else self.act(self.fc_2(f)) | |
f = self.act(self.fc_3(f, z)) if z is not None else self.act(self.fc_3(f)) | |
f = self.act(self.fc_4(f, z)) if z is not None else self.act(self.fc_4(f)) | |
# Sigma MLP | |
sigma = self.fc_sigma(f) if z is not None else self.act(self.fc_sigma(f)) | |
# Color MLP | |
f = self.act(self.fc_5(f, z)) if z is not None else self.act(self.fc_5(f)) | |
f = self.act(self.fc_6(f, z)) if z is not None else self.act(self.fc_6(f)) | |
c = self.fc_out_c(f) | |
return sigma, c | |
class RenderCNN(torch.nn.Module): | |
r"""CNN converting intermediate feature map to final image.""" | |
def __init__(self, cfg): | |
super(RenderCNN, self).__init__() | |
if cfg.NETWORK.GANCRAFT.STYLE_DIM is not None: | |
self.fc_z_cond = torch.nn.Linear( | |
cfg.NETWORK.GANCRAFT.STYLE_DIM, | |
2 * 2 * cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
) | |
self.conv1 = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_OUT_DIM_COLOR, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
1, | |
stride=1, | |
padding=0, | |
) | |
self.conv2a = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
3, | |
stride=1, | |
padding=1, | |
) | |
self.conv2b = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
3, | |
stride=1, | |
padding=1, | |
bias=False, | |
) | |
self.conv3a = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
3, | |
stride=1, | |
padding=1, | |
) | |
self.conv3b = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
3, | |
stride=1, | |
padding=1, | |
bias=False, | |
) | |
self.conv4a = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
1, | |
stride=1, | |
padding=0, | |
) | |
self.conv4b = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, | |
1, | |
stride=1, | |
padding=0, | |
) | |
self.conv4 = torch.nn.Conv2d( | |
cfg.NETWORK.GANCRAFT.RENDER_HIDDEN_DIM, 3, 1, stride=1, padding=0 | |
) | |
self.act = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
def modulate(self, x, w, b): | |
w = w[..., None, None] | |
b = b[..., None, None] | |
return x * (w + 1) + b | |
def forward(self, x, z): | |
r"""Forward network. | |
Args: | |
x (N x in_channels x H x W tensor): Intermediate feature map | |
z (N x style_dim tensor): Style codes. | |
""" | |
if z is not None: | |
z = self.fc_z_cond(z) | |
adapt = torch.chunk(z, 2 * 2, dim=-1) | |
y = self.act(self.conv1(x)) | |
y = y + self.conv2b(self.act(self.conv2a(y))) | |
if z is not None: | |
y = self.act(self.modulate(y, adapt[0], adapt[1])) | |
else: | |
y = self.act(y) | |
y = y + self.conv3b(self.act(self.conv3a(y))) | |
if z is not None: | |
y = self.act(self.modulate(y, adapt[2], adapt[3])) | |
else: | |
y = self.act(y) | |
y = y + self.conv4b(self.act(self.conv4a(y))) | |
y = self.act(y) | |
y = self.conv4(y) | |
return y | |
class SRTConvBlock(torch.nn.Module): | |
def __init__(self, in_channels, hidden_channels=None, out_channels=None): | |
super(SRTConvBlock, self).__init__() | |
if hidden_channels is None: | |
hidden_channels = in_channels | |
if out_channels is None: | |
out_channels = 2 * hidden_channels | |
self.layers = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
in_channels, | |
hidden_channels, | |
stride=1, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
hidden_channels, | |
out_channels, | |
stride=2, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
torch.nn.ReLU(), | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class ResConvBlock(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, norm, bias=False): | |
super(ResConvBlock, self).__init__() | |
# conv3x3(in_planes, int(out_planes / 2)) | |
self.conv1 = torch.nn.Conv2d( | |
in_channels, | |
out_channels // 2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=bias, | |
) | |
# conv3x3(int(out_planes / 2), int(out_planes / 4)) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels // 2, | |
out_channels // 4, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=bias, | |
) | |
# conv3x3(int(out_planes / 4), int(out_planes / 4)) | |
self.conv3 = torch.nn.Conv2d( | |
out_channels // 4, | |
out_channels // 4, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=bias, | |
) | |
if norm == "BATCH_NORM": | |
self.bn1 = torch.nn.BatchNorm2d(in_channels) | |
self.bn2 = torch.nn.BatchNorm2d(out_channels // 2) | |
self.bn3 = torch.nn.BatchNorm2d(out_channels // 4) | |
self.bn4 = torch.nn.BatchNorm2d(in_channels) | |
elif norm == "GROUP_NORM": | |
self.bn1 = torch.nn.GroupNorm(32, in_channels) | |
self.bn2 = torch.nn.GroupNorm(32, out_channels // 2) | |
self.bn3 = torch.nn.GroupNorm(32, out_channels // 4) | |
self.bn4 = torch.nn.GroupNorm(32, in_channels) | |
if in_channels != out_channels: | |
self.downsample = torch.nn.Sequential( | |
self.bn4, | |
torch.nn.ReLU(True), | |
torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, bias=False | |
), | |
) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
residual = x | |
# print(residual.size()) # torch.Size([N, 64, H, W]) | |
out1 = self.bn1(x) | |
out1 = F.relu(out1, True) | |
out1 = self.conv1(out1) | |
# print(out1.size()) # torch.Size([N, 64, H, W]) | |
out2 = self.bn2(out1) | |
out2 = F.relu(out2, True) | |
out2 = self.conv2(out2) | |
# print(out2.size()) # torch.Size([N, 32, H, W]) | |
out3 = self.bn3(out2) | |
out3 = F.relu(out3, True) | |
out3 = self.conv3(out3) | |
# print(out3.size()) # torch.Size([N, 32, H, W]) | |
out3 = torch.cat((out1, out2, out3), dim=1) | |
# print(out3.size()) # torch.Size([N, 128, H, W]) | |
if self.downsample is not None: | |
residual = self.downsample(residual) | |
# print(residual.size()) # torch.Size([N, 128, H, W]) | |
out3 += residual | |
return out3 | |
class ModLinear(torch.nn.Module): | |
r"""Linear layer with affine modulation (Based on StyleGAN2 mod demod). | |
Equivalent to affine modulation following linear, but faster when the same modulation parameters are shared across | |
multiple inputs. | |
Args: | |
in_features (int): Number of input features. | |
out_features (int): Number of output features. | |
style_features (int): Number of style features. | |
bias (bool): Apply additive bias before the activation function? | |
mod_bias (bool): Whether to modulate bias. | |
output_mode (bool): If True, modulate output instead of input. | |
weight_gain (float): Initialization gain | |
""" | |
def __init__( | |
self, | |
in_features, | |
out_features, | |
style_features, | |
bias=True, | |
mod_bias=True, | |
output_mode=False, | |
weight_gain=1, | |
bias_init=0, | |
): | |
super(ModLinear, self).__init__() | |
weight_gain = weight_gain / np.sqrt(in_features) | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_features, in_features]) * weight_gain | |
) | |
self.bias = ( | |
torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) | |
if bias | |
else None | |
) | |
self.weight_alpha = torch.nn.Parameter( | |
torch.randn([in_features, style_features]) / np.sqrt(style_features) | |
) | |
self.bias_alpha = torch.nn.Parameter( | |
torch.full([in_features], 1, dtype=torch.float) | |
) # init to 1 | |
self.weight_beta = None | |
self.bias_beta = None | |
self.mod_bias = mod_bias | |
self.output_mode = output_mode | |
if mod_bias: | |
if output_mode: | |
mod_bias_dims = out_features | |
else: | |
mod_bias_dims = in_features | |
self.weight_beta = torch.nn.Parameter( | |
torch.randn([mod_bias_dims, style_features]) / np.sqrt(style_features) | |
) | |
self.bias_beta = torch.nn.Parameter( | |
torch.full([mod_bias_dims], 0, dtype=torch.float) | |
) | |
def _linear_f(x, w, b): | |
w = w.to(x.dtype) | |
x_shape = x.shape | |
x = x.reshape(-1, x_shape[-1]) | |
if b is not None: | |
b = b.to(x.dtype) | |
x = torch.addmm(b.unsqueeze(0), x, w.t()) | |
else: | |
x = x.matmul(w.t()) | |
x = x.reshape(*x_shape[:-1], -1) | |
return x | |
# x: B, ... , Cin | |
# z: B, 1, 1, , Cz | |
def forward(self, x, z): | |
x_shape = x.shape | |
z_shape = z.shape | |
x = x.reshape(x_shape[0], -1, x_shape[-1]) | |
z = z.reshape(z_shape[0], 1, z_shape[-1]) | |
alpha = self._linear_f(z, self.weight_alpha, self.bias_alpha) # [B, ..., I] | |
w = self.weight.to(x.dtype) # [O I] | |
w = w.unsqueeze(0) * alpha # [1 O I] * [B 1 I] = [B O I] | |
if self.mod_bias: | |
beta = self._linear_f(z, self.weight_beta, self.bias_beta) # [B, ..., I] | |
if not self.output_mode: | |
x = x + beta | |
b = self.bias | |
if b is not None: | |
b = b.to(x.dtype)[None, None, :] | |
if self.mod_bias and self.output_mode: | |
if b is None: | |
b = beta | |
else: | |
b = b + beta | |
# [B ? I] @ [B I O] = [B ? O] | |
if b is not None: | |
x = torch.baddbmm(b, x, w.transpose(1, 2)) | |
else: | |
x = x.bmm(w.transpose(1, 2)) | |
x = x.reshape(*x_shape[:-1], x.shape[-1]) | |
return x | |
class GanCraftDiscriminator(torch.nn.Module): | |
def __init__(self, cfg): | |
super(GanCraftDiscriminator, self).__init__() | |
# bottom-up pathway | |
# down_conv2d_block = Conv2dBlock, stride=2, kernel=3, padding=1, weight_norm=spectral | |
# self.enc1 = down_conv2d_block(num_input_channels, num_filters) # 3 | |
self.enc1 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
3, # RGB | |
cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=2, | |
kernel_size=3, | |
padding=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.enc2 = down_conv2d_block(1 * num_filters, 2 * num_filters) # 7 | |
self.enc2 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
1 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
2 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=2, | |
kernel_size=3, | |
padding=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.enc3 = down_conv2d_block(2 * num_filters, 4 * num_filters) # 15 | |
self.enc3 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
2 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=2, | |
kernel_size=3, | |
padding=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.enc4 = down_conv2d_block(4 * num_filters, 8 * num_filters) # 31 | |
self.enc4 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
8 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=2, | |
kernel_size=3, | |
padding=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.enc5 = down_conv2d_block(8 * num_filters, 8 * num_filters) # 63 | |
self.enc5 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
8 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
8 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=2, | |
kernel_size=3, | |
padding=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# top-down pathway | |
# latent_conv2d_block = Conv2dBlock, stride=1, kernel=1, weight_norm=spectral | |
# self.lat2 = latent_conv2d_block(2 * num_filters, 4 * num_filters) | |
self.lat2 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
2 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=1, | |
kernel_size=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.lat3 = latent_conv2d_block(4 * num_filters, 4 * num_filters) | |
self.lat3 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=1, | |
kernel_size=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.lat4 = latent_conv2d_block(8 * num_filters, 4 * num_filters) | |
self.lat4 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
8 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=1, | |
kernel_size=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.lat5 = latent_conv2d_block(8 * num_filters, 4 * num_filters) | |
self.lat5 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
8 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=1, | |
kernel_size=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# upsampling | |
self.upsample2x = torch.nn.Upsample( | |
scale_factor=2, mode="bilinear", align_corners=False | |
) | |
# final layers | |
# stride1_conv2d_block = Conv2dBlock, stride=1, kernel=3, padding=1, weight_norm=spectral | |
# self.final2 = stride1_conv2d_block(4 * num_filters, 2 * num_filters) | |
self.final2 = torch.nn.Sequential( | |
torch.nn.utils.spectral_norm( | |
torch.nn.Conv2d( | |
4 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
2 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
stride=1, | |
kernel_size=3, | |
padding=1, | |
bias=True, | |
) | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
# self.output = Conv2dBlock(num_filters * 2, num_labels + 1, kernel_size=1) | |
self.output = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
2 * cfg.NETWORK.GANCRAFT.DIS_N_CHANNEL_BASE, | |
cfg.NETWORK.GANCRAFT.N_CLASSES + 1, | |
stride=1, | |
kernel_size=1, | |
bias=True, | |
), | |
torch.nn.LeakyReLU(0.2), | |
) | |
self.interpolator = self._smooth_interp | |
def _smooth_interp(x, size): | |
r"""Smooth interpolation of segmentation maps. | |
Args: | |
x (4D tensor): Segmentation maps. | |
size(2D list): Target size (H, W). | |
""" | |
x = F.interpolate(x, size=size, mode="area") | |
onehot_idx = torch.argmax(x, dim=-3, keepdims=True) | |
x.fill_(0.0) | |
x.scatter_(1, onehot_idx, 1.0) | |
return x | |
def _single_forward(self, images, seg_maps): | |
# bottom-up pathway | |
feat11 = self.enc1(images) | |
feat12 = self.enc2(feat11) | |
feat13 = self.enc3(feat12) | |
feat14 = self.enc4(feat13) | |
feat15 = self.enc5(feat14) | |
# top-down pathway and lateral connections | |
feat25 = self.lat5(feat15) | |
feat24 = self.upsample2x(feat25) + self.lat4(feat14) | |
feat23 = self.upsample2x(feat24) + self.lat3(feat13) | |
feat22 = self.upsample2x(feat23) + self.lat2(feat12) | |
# final prediction layers | |
feat32 = self.final2(feat22) | |
label_map = self.interpolator(seg_maps, size=feat32.size()[2:]) | |
pred = self.output(feat32) # N, num_labels + 1, H//4, W//4 | |
return {"pred": pred, "label": label_map} | |
def forward(self, images, seg_maps, masks): | |
# print(seg_maps.size()) # torch.Size([1, 7, H, W]) | |
# print(masks.size()) # torch.Size([1, 1, H, W]) | |
seg_maps = seg_maps * masks | |
return self._single_forward(images * masks, seg_maps) | |