Spaces:
Sleeping
Sleeping
iamomtiwari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
3 |
from PIL import Image
|
4 |
|
@@ -6,22 +7,38 @@ from PIL import Image
|
|
6 |
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST")
|
7 |
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def predict(image):
|
10 |
-
# Preprocess image
|
11 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
interface = gr.Interface(
|
20 |
-
fn=predict,
|
21 |
-
inputs=gr.Image(type="pil"),
|
22 |
-
outputs="text",
|
23 |
-
title="Crop Disease Classifier",
|
24 |
-
description="Upload an image of a crop leaf to classify the disease."
|
25 |
-
)
|
26 |
|
|
|
|
|
27 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
4 |
from PIL import Image
|
5 |
|
|
|
7 |
model = ViTForImageClassification.from_pretrained("iamomtiwari/VITPEST")
|
8 |
feature_extractor = ViTFeatureExtractor.from_pretrained("iamomtiwari/VITPEST")
|
9 |
|
10 |
+
# Define class labels and treatment advice
|
11 |
+
class_labels = {
|
12 |
+
"Corn___Common_Rust": "Apply fungicides as soon as symptoms are noticed. Practice crop rotation and remove infected plants.",
|
13 |
+
"Corn___Gray_Leaf_Spot": "Rotate crops to non-host plants, apply resistant varieties, and use fungicides as needed.",
|
14 |
+
"Corn___Healthy": "Continue good agricultural practices: ensure proper irrigation, nutrient supply, and monitor for pests.",
|
15 |
+
"Corn___Northern_Leaf_Blight": "Remove and destroy infected plant debris, apply fungicides, and rotate crops.",
|
16 |
+
"Rice___Brown_Spot": "Use resistant varieties, improve field drainage, and apply fungicides if necessary.",
|
17 |
+
"Rice___Healthy": "Maintain proper irrigation, fertilization, and pest control measures.",
|
18 |
+
"Rice___Leaf_Blast": "Use resistant varieties, apply fungicides during high-risk periods, and practice good field management.",
|
19 |
+
"Rice___Neck_Blast": "Plant resistant varieties, improve nutrient management, and apply fungicides if symptoms appear.",
|
20 |
+
"Wheat___Brown_Rust": "Apply fungicides and practice crop rotation with non-host crops.",
|
21 |
+
"Wheat___Healthy": "Continue with good management practices, including proper fertilization and weed control.",
|
22 |
+
"Wheat___Yellow_Rust": "Use resistant varieties, apply fungicides, and rotate crops.",
|
23 |
+
"Sugarcane__Red_Rot": "Plant resistant varieties and ensure good drainage.",
|
24 |
+
"Sugarcane__Healthy": "Maintain healthy soil conditions and proper irrigation.",
|
25 |
+
"Sugarcane__Bacterial Blight": "Use disease-free planting material, practice crop rotation, and destroy infected plants."
|
26 |
+
}
|
27 |
+
|
28 |
+
# Mapping label indices to class labels
|
29 |
+
labels_list = list(class_labels.keys())
|
30 |
+
|
31 |
+
# Inference function
|
32 |
def predict(image):
|
|
|
33 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(**inputs)
|
36 |
+
predicted_class_idx = outputs.logits.argmax(-1).item()
|
37 |
+
predicted_label = labels_list[predicted_class_idx]
|
38 |
+
treatment_advice = class_labels[predicted_label]
|
39 |
+
|
40 |
+
return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Create Gradio Interface
|
43 |
+
interface = gr.Interface(fn=predict, inputs="image", outputs="text")
|
44 |
interface.launch()
|