iamomtiwari commited on
Commit
a5bca54
·
verified ·
1 Parent(s): 0666166

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -45,11 +45,9 @@ def predict(image):
45
  predicted_label = labels_list[predicted_class_idx]
46
 
47
  # Ask user if the prediction is correct
48
- user_feedback = gr.inputs.Textbox(visible=False, default="Please provide feedback on the model prediction.")
49
-
50
  if predicted_class_idx < len(class_labels): # It's a crop disease
51
  treatment_advice = class_labels[predicted_class_idx + 1]["treatment"]
52
- return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}\n\nIs this prediction correct? (yes/no)", user_feedback
53
  else:
54
  # If not a crop disease, use the fallback model (ResNet50) for general object detection
55
  inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt")
@@ -59,8 +57,8 @@ def predict(image):
59
 
60
  # Get the fallback prediction label
61
  fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback]
62
- return f"Fallback Prediction (Not a Crop): {fallback_label}\n\nIs this prediction correct? (yes/no)", user_feedback
63
 
64
  # Create Gradio Interface
65
- interface = gr.Interface(fn=predict, inputs="image", outputs=["text", "text"])
66
  interface.launch()
 
45
  predicted_label = labels_list[predicted_class_idx]
46
 
47
  # Ask user if the prediction is correct
 
 
48
  if predicted_class_idx < len(class_labels): # It's a crop disease
49
  treatment_advice = class_labels[predicted_class_idx + 1]["treatment"]
50
+ return f"Disease: {predicted_label}\n\nTreatment Advice: {treatment_advice}\n\nIs this prediction correct? (yes/no)"
51
  else:
52
  # If not a crop disease, use the fallback model (ResNet50) for general object detection
53
  inputs_fallback = fallback_feature_extractor(images=image, return_tensors="pt")
 
57
 
58
  # Get the fallback prediction label
59
  fallback_label = fallback_model.config.id2label[predicted_class_idx_fallback]
60
+ return f"Fallback Prediction (Not a Crop): {fallback_label}\n\nIs this prediction correct? (yes/no)"
61
 
62
  # Create Gradio Interface
63
+ interface = gr.Interface(fn=predict, inputs="image", outputs="text")
64
  interface.launch()