Spaces:
Running
Running
File size: 2,477 Bytes
be6c755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
"""
Code copyrights are with: https://github.com/SystemErrorWang/White-box-Cartoonization/
To adapt the code with tensorflow v2 changes obtained from: https://github.com/steubk/White-box-Cartoonization
"""
try:
import tensorflow.compat.v1 as tf
import tf_slim as slim
except ImportError:
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
def resblock(inputs, out_channel=32, name='resblock'):
with tf.variable_scope(name):
x = slim.convolution2d(inputs, out_channel, [3, 3],
activation_fn=None, scope='conv1')
x = tf.nn.leaky_relu(x)
x = slim.convolution2d(x, out_channel, [3, 3],
activation_fn=None, scope='conv2')
return x + inputs
def unet_generator(inputs, channel=32, num_blocks=4, name='generator', reuse=False):
with tf.variable_scope(name, reuse=reuse):
x0 = slim.convolution2d(inputs, channel, [7, 7], activation_fn=None)
x0 = tf.nn.leaky_relu(x0)
x1 = slim.convolution2d(x0, channel, [3, 3], stride=2, activation_fn=None)
x1 = tf.nn.leaky_relu(x1)
x1 = slim.convolution2d(x1, channel*2, [3, 3], activation_fn=None)
x1 = tf.nn.leaky_relu(x1)
x2 = slim.convolution2d(x1, channel*2, [3, 3], stride=2, activation_fn=None)
x2 = tf.nn.leaky_relu(x2)
x2 = slim.convolution2d(x2, channel*4, [3, 3], activation_fn=None)
x2 = tf.nn.leaky_relu(x2)
for idx in range(num_blocks):
x2 = resblock(x2, out_channel=channel*4, name='block_{}'.format(idx))
x2 = slim.convolution2d(x2, channel*2, [3, 3], activation_fn=None)
x2 = tf.nn.leaky_relu(x2)
h1, w1 = tf.shape(x2)[1], tf.shape(x2)[2]
x3 = tf.image.resize_bilinear(x2, (h1*2, w1*2))
x3 = slim.convolution2d(x3+x1, channel*2, [3, 3], activation_fn=None)
x3 = tf.nn.leaky_relu(x3)
x3 = slim.convolution2d(x3, channel, [3, 3], activation_fn=None)
x3 = tf.nn.leaky_relu(x3)
h2, w2 = tf.shape(x3)[1], tf.shape(x3)[2]
x4 = tf.image.resize_bilinear(x3, (h2*2, w2*2))
x4 = slim.convolution2d(x4+x0, channel, [3, 3], activation_fn=None)
x4 = tf.nn.leaky_relu(x4)
x4 = slim.convolution2d(x4, 3, [7, 7], activation_fn=None)
return x4
if __name__ == '__main__':
pass |