|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from ...modules import sparse as sp |
|
from .base import SparseTransformerBase |
|
from ...representations import Strivec |
|
|
|
|
|
class SLatRadianceFieldDecoder(SparseTransformerBase): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
model_channels: int, |
|
latent_channels: int, |
|
num_blocks: int, |
|
num_heads: Optional[int] = None, |
|
num_head_channels: Optional[int] = 64, |
|
mlp_ratio: float = 4, |
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", |
|
window_size: int = 8, |
|
pe_mode: Literal["ape", "rope"] = "ape", |
|
use_fp16: bool = False, |
|
use_checkpoint: bool = False, |
|
qk_rms_norm: bool = False, |
|
representation_config: dict = None, |
|
): |
|
super().__init__( |
|
in_channels=latent_channels, |
|
model_channels=model_channels, |
|
num_blocks=num_blocks, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
mlp_ratio=mlp_ratio, |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
pe_mode=pe_mode, |
|
use_fp16=use_fp16, |
|
use_checkpoint=use_checkpoint, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.resolution = resolution |
|
self.rep_config = representation_config |
|
self._calc_layout() |
|
self.out_layer = sp.SparseLinear(model_channels, self.out_channels) |
|
|
|
self.initialize_weights() |
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
def initialize_weights(self) -> None: |
|
super().initialize_weights() |
|
|
|
nn.init.constant_(self.out_layer.weight, 0) |
|
nn.init.constant_(self.out_layer.bias, 0) |
|
|
|
def _calc_layout(self) -> None: |
|
self.layout = { |
|
'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']}, |
|
'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']}, |
|
'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3}, |
|
} |
|
start = 0 |
|
for k, v in self.layout.items(): |
|
v['range'] = (start, start + v['size']) |
|
start += v['size'] |
|
self.out_channels = start |
|
|
|
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]: |
|
""" |
|
Convert a batch of network outputs to 3D representations. |
|
|
|
Args: |
|
x: The [N x * x C] sparse tensor output by the network. |
|
|
|
Returns: |
|
list of representations |
|
""" |
|
ret = [] |
|
for i in range(x.shape[0]): |
|
representation = Strivec( |
|
sh_degree=0, |
|
resolution=self.resolution, |
|
aabb=[-0.5, -0.5, -0.5, 1, 1, 1], |
|
rank=self.rep_config['rank'], |
|
dim=self.rep_config['dim'], |
|
device='cuda', |
|
) |
|
representation.density_shift = 0.0 |
|
representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution |
|
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda') |
|
for k, v in self.layout.items(): |
|
setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape'])) |
|
representation.trivec = representation.trivec + 1 |
|
ret.append(representation) |
|
return ret |
|
|
|
def forward(self, x: sp.SparseTensor) -> List[Strivec]: |
|
h = super().forward(x) |
|
h = h.type(x.dtype) |
|
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) |
|
h = self.out_layer(h) |
|
return self.to_representation(h) |
|
|