|
from typing import * |
|
from contextlib import contextmanager |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from tqdm import tqdm |
|
from easydict import EasyDict as edict |
|
from torchvision import transforms |
|
from PIL import Image |
|
import rembg |
|
from .base import Pipeline |
|
from . import samplers |
|
from ..modules import sparse as sp |
|
from ..representations import Gaussian, Strivec, MeshExtractResult |
|
|
|
|
|
class TrellisImageTo3DPipeline(Pipeline): |
|
""" |
|
Pipeline for inferring Trellis image-to-3D models. |
|
|
|
Args: |
|
models (dict[str, nn.Module]): The models to use in the pipeline. |
|
sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure. |
|
slat_sampler (samplers.Sampler): The sampler for the structured latent. |
|
slat_normalization (dict): The normalization parameters for the structured latent. |
|
image_cond_model (str): The name of the image conditioning model. |
|
""" |
|
def __init__( |
|
self, |
|
models: dict[str, nn.Module] = None, |
|
sparse_structure_sampler: samplers.Sampler = None, |
|
slat_sampler: samplers.Sampler = None, |
|
slat_normalization: dict = None, |
|
image_cond_model: str = None, |
|
): |
|
if models is None: |
|
return |
|
super().__init__(models) |
|
self.sparse_structure_sampler = sparse_structure_sampler |
|
self.slat_sampler = slat_sampler |
|
self.sparse_structure_sampler_params = {} |
|
self.slat_sampler_params = {} |
|
self.slat_normalization = slat_normalization |
|
self.rembg_session = None |
|
self._init_image_cond_model(image_cond_model) |
|
|
|
@staticmethod |
|
def from_pretrained(path: str) -> "TrellisImageTo3DPipeline": |
|
""" |
|
Load a pretrained model. |
|
|
|
Args: |
|
path (str): The path to the model. Can be either local path or a Hugging Face repository. |
|
""" |
|
pipeline = super(TrellisImageTo3DPipeline, TrellisImageTo3DPipeline).from_pretrained(path) |
|
new_pipeline = TrellisImageTo3DPipeline() |
|
new_pipeline.__dict__ = pipeline.__dict__ |
|
args = pipeline._pretrained_args |
|
|
|
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args']) |
|
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params'] |
|
|
|
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args']) |
|
new_pipeline.slat_sampler_params = args['slat_sampler']['params'] |
|
|
|
new_pipeline.slat_normalization = args['slat_normalization'] |
|
|
|
new_pipeline._init_image_cond_model(args['image_cond_model']) |
|
|
|
return new_pipeline |
|
|
|
def _init_image_cond_model(self, name: str): |
|
""" |
|
Initialize the image conditioning model. |
|
""" |
|
dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True) |
|
dinov2_model.eval() |
|
self.models['image_cond_model'] = dinov2_model |
|
transform = transforms.Compose([ |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
self.image_cond_model_transform = transform |
|
|
|
def preprocess_image(self, input: Image.Image) -> Image.Image: |
|
""" |
|
Preprocess the input image. |
|
""" |
|
|
|
has_alpha = False |
|
if input.mode == 'RGBA': |
|
alpha = np.array(input)[:, :, 3] |
|
if not np.all(alpha == 255): |
|
has_alpha = True |
|
if has_alpha: |
|
output = input |
|
else: |
|
input = input.convert('RGB') |
|
max_size = max(input.size) |
|
scale = min(1, 1024 / max_size) |
|
if scale < 1: |
|
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS) |
|
if getattr(self, 'rembg_session', None) is None: |
|
self.rembg_session = rembg.new_session('u2net') |
|
output = rembg.remove(input, session=self.rembg_session) |
|
output_np = np.array(output) |
|
alpha = output_np[:, :, 3] |
|
bbox = np.argwhere(alpha > 0.8 * 255) |
|
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0]) |
|
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2 |
|
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) |
|
size = int(size * 1.2) |
|
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2 |
|
output = output.crop(bbox) |
|
output = output.resize((518, 518), Image.Resampling.LANCZOS) |
|
output = np.array(output).astype(np.float32) / 255 |
|
output = output[:, :, :3] * output[:, :, 3:4] |
|
output = Image.fromarray((output * 255).astype(np.uint8)) |
|
return output |
|
|
|
@torch.no_grad() |
|
def encode_image(self, image: Union[torch.Tensor, list[Image.Image]]) -> torch.Tensor: |
|
""" |
|
Encode the image. |
|
|
|
Args: |
|
image (Union[torch.Tensor, list[Image.Image]]): The image to encode |
|
|
|
Returns: |
|
torch.Tensor: The encoded features. |
|
""" |
|
if isinstance(image, torch.Tensor): |
|
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)" |
|
elif isinstance(image, list): |
|
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images" |
|
image = [i.resize((518, 518), Image.LANCZOS) for i in image] |
|
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image] |
|
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image] |
|
image = torch.stack(image).to(self.device) |
|
else: |
|
raise ValueError(f"Unsupported type of image: {type(image)}") |
|
|
|
image = self.image_cond_model_transform(image).to(self.device) |
|
features = self.models['image_cond_model'](image, is_training=True)['x_prenorm'] |
|
patchtokens = F.layer_norm(features, features.shape[-1:]) |
|
return patchtokens |
|
|
|
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict: |
|
""" |
|
Get the conditioning information for the model. |
|
|
|
Args: |
|
image (Union[torch.Tensor, list[Image.Image]]): The image prompts. |
|
|
|
Returns: |
|
dict: The conditioning information |
|
""" |
|
cond = self.encode_image(image) |
|
neg_cond = torch.zeros_like(cond) |
|
return { |
|
'cond': cond, |
|
'neg_cond': neg_cond, |
|
} |
|
|
|
def sample_sparse_structure( |
|
self, |
|
cond: dict, |
|
num_samples: int = 1, |
|
sampler_params: dict = {}, |
|
) -> torch.Tensor: |
|
""" |
|
Sample sparse structures with the given conditioning. |
|
|
|
Args: |
|
cond (dict): The conditioning information. |
|
num_samples (int): The number of samples to generate. |
|
sampler_params (dict): Additional parameters for the sampler. |
|
""" |
|
|
|
flow_model = self.models['sparse_structure_flow_model'] |
|
reso = flow_model.resolution |
|
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device) |
|
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params} |
|
z_s = self.sparse_structure_sampler.sample( |
|
flow_model, |
|
noise, |
|
**cond, |
|
**sampler_params, |
|
verbose=True |
|
).samples |
|
|
|
|
|
decoder = self.models['sparse_structure_decoder'] |
|
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int() |
|
|
|
return coords |
|
|
|
def decode_slat( |
|
self, |
|
slat: sp.SparseTensor, |
|
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'], |
|
) -> dict: |
|
""" |
|
Decode the structured latent. |
|
|
|
Args: |
|
slat (sp.SparseTensor): The structured latent. |
|
formats (List[str]): The formats to decode the structured latent to. |
|
|
|
Returns: |
|
dict: The decoded structured latent. |
|
""" |
|
ret = {} |
|
if 'mesh' in formats: |
|
ret['mesh'] = self.models['slat_decoder_mesh'](slat) |
|
if 'gaussian' in formats: |
|
ret['gaussian'] = self.models['slat_decoder_gs'](slat) |
|
if 'radiance_field' in formats: |
|
ret['radiance_field'] = self.models['slat_decoder_rf'](slat) |
|
return ret |
|
|
|
def sample_slat( |
|
self, |
|
cond: dict, |
|
coords: torch.Tensor, |
|
sampler_params: dict = {}, |
|
) -> sp.SparseTensor: |
|
""" |
|
Sample structured latent with the given conditioning. |
|
|
|
Args: |
|
cond (dict): The conditioning information. |
|
coords (torch.Tensor): The coordinates of the sparse structure. |
|
sampler_params (dict): Additional parameters for the sampler. |
|
""" |
|
|
|
flow_model = self.models['slat_flow_model'] |
|
noise = sp.SparseTensor( |
|
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device), |
|
coords=coords, |
|
) |
|
sampler_params = {**self.slat_sampler_params, **sampler_params} |
|
slat = self.slat_sampler.sample( |
|
flow_model, |
|
noise, |
|
**cond, |
|
**sampler_params, |
|
verbose=True |
|
).samples |
|
|
|
std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device) |
|
mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device) |
|
slat = slat * std + mean |
|
|
|
return slat |
|
|
|
@torch.no_grad() |
|
def run( |
|
self, |
|
image: Image.Image, |
|
num_samples: int = 1, |
|
seed: int = 42, |
|
sparse_structure_sampler_params: dict = {}, |
|
slat_sampler_params: dict = {}, |
|
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'], |
|
preprocess_image: bool = True, |
|
) -> dict: |
|
""" |
|
Run the pipeline. |
|
|
|
Args: |
|
image (Image.Image): The image prompt. |
|
num_samples (int): The number of samples to generate. |
|
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler. |
|
slat_sampler_params (dict): Additional parameters for the structured latent sampler. |
|
preprocess_image (bool): Whether to preprocess the image. |
|
""" |
|
if preprocess_image: |
|
image = self.preprocess_image(image) |
|
cond = self.get_cond([image]) |
|
torch.manual_seed(seed) |
|
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params) |
|
slat = self.sample_slat(cond, coords, slat_sampler_params) |
|
return self.decode_slat(slat, formats) |
|
|
|
@contextmanager |
|
def inject_sampler_multi_image( |
|
self, |
|
sampler_name: str, |
|
num_images: int, |
|
num_steps: int, |
|
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic', |
|
): |
|
""" |
|
Inject a sampler with multiple images as condition. |
|
|
|
Args: |
|
sampler_name (str): The name of the sampler to inject. |
|
num_images (int): The number of images to condition on. |
|
num_steps (int): The number of steps to run the sampler for. |
|
""" |
|
sampler = getattr(self, sampler_name) |
|
setattr(sampler, f'_old_inference_model', sampler._inference_model) |
|
|
|
if mode == 'stochastic': |
|
if num_images > num_steps: |
|
print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. " |
|
"This may lead to performance degradation.\033[0m") |
|
|
|
cond_indices = (np.arange(num_steps) % num_images).tolist() |
|
def _new_inference_model(self, model, x_t, t, cond, **kwargs): |
|
cond_idx = cond_indices.pop(0) |
|
cond_i = cond[cond_idx:cond_idx+1] |
|
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs) |
|
|
|
elif mode =='multidiffusion': |
|
from .samplers import FlowEulerSampler |
|
def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs): |
|
if cfg_interval[0] <= t <= cfg_interval[1]: |
|
preds = [] |
|
for i in range(len(cond)): |
|
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs)) |
|
pred = sum(preds) / len(preds) |
|
neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs) |
|
return (1 + cfg_strength) * pred - cfg_strength * neg_pred |
|
else: |
|
preds = [] |
|
for i in range(len(cond)): |
|
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs)) |
|
pred = sum(preds) / len(preds) |
|
return pred |
|
|
|
else: |
|
raise ValueError(f"Unsupported mode: {mode}") |
|
|
|
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler)) |
|
|
|
yield |
|
|
|
sampler._inference_model = sampler._old_inference_model |
|
delattr(sampler, f'_old_inference_model') |
|
|
|
@torch.no_grad() |
|
def run_multi_image( |
|
self, |
|
images: List[Image.Image], |
|
num_samples: int = 1, |
|
seed: int = 42, |
|
sparse_structure_sampler_params: dict = {}, |
|
slat_sampler_params: dict = {}, |
|
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'], |
|
preprocess_image: bool = True, |
|
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic', |
|
) -> dict: |
|
""" |
|
Run the pipeline with multiple images as condition |
|
|
|
Args: |
|
images (List[Image.Image]): The multi-view images of the assets |
|
num_samples (int): The number of samples to generate. |
|
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler. |
|
slat_sampler_params (dict): Additional parameters for the structured latent sampler. |
|
preprocess_image (bool): Whether to preprocess the image. |
|
""" |
|
if preprocess_image: |
|
images = [self.preprocess_image(image) for image in images] |
|
cond = self.get_cond(images) |
|
cond['neg_cond'] = cond['neg_cond'][:1] |
|
torch.manual_seed(seed) |
|
ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps') |
|
with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode): |
|
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params) |
|
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps') |
|
with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode): |
|
slat = self.sample_slat(cond, coords, slat_sampler_params) |
|
return self.decode_slat(slat, formats) |
|
|