KingNish commited on
Commit
6764406
·
verified ·
1 Parent(s): 0ce33bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -63
app.py CHANGED
@@ -13,7 +13,6 @@ import tempfile
13
  import uuid
14
  import time
15
  import threading
16
- from concurrent.futures import ThreadPoolExecutor, as_completed
17
 
18
  torch.set_float32_matmul_precision("medium")
19
 
@@ -61,33 +60,6 @@ def cleanup_temp_files():
61
  cleanup_thread = threading.Thread(target=cleanup_temp_files, daemon=True)
62
  cleanup_thread.start()
63
 
64
- def process(image, bg, fast_mode=False):
65
- image_size = image.size
66
- input_images = transform_image(image).unsqueeze(0).to(device)
67
-
68
- # Select the model based on fast_mode
69
- model = birefnet_lite if fast_mode else birefnet
70
-
71
- # Prediction
72
- with torch.no_grad():
73
- preds = model(input_images)[-1].sigmoid().cpu()
74
- pred = preds[0].squeeze()
75
- pred_pil = transforms.ToPILImage()(pred)
76
- mask = pred_pil.resize(image_size)
77
-
78
- if isinstance(bg, str) and bg.startswith("#"):
79
- color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
80
- background = Image.new("RGBA", image_size, color_rgb + (255,))
81
- elif isinstance(bg, Image.Image):
82
- background = bg.convert("RGBA").resize(image_size)
83
- else:
84
- background = Image.open(bg).convert("RGBA").resize(image_size)
85
-
86
- # Composite the image onto the background using the mask
87
- image = Image.composite(image, background, mask)
88
-
89
- return image
90
-
91
 
92
  @spaces.GPU
93
  def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True):
@@ -105,11 +77,11 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
105
  audio = video.audio
106
 
107
  # Extract frames at the specified FPS
108
- frames = list(video.iter_frames(fps=fps))
109
 
110
- # Process frames in parallel
111
  processed_frames = []
112
- yield gr.update(visible=True), gr.update(visible=False), "Processing started... Elapsed time: 0 seconds"
113
 
114
  if bg_type == "Video":
115
  background_video = mp.VideoFileClip(bg_video)
@@ -124,8 +96,7 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
124
 
125
  bg_frame_index = 0 # Initialize background frame index
126
 
127
- # Define a helper function for processing a single frame
128
- def process_single_frame(i, frame):
129
  pil_image = Image.fromarray(frame)
130
  if bg_type == "Color":
131
  processed_image = process(pil_image, color, fast_mode)
@@ -134,41 +105,23 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
134
  elif bg_type == "Video":
135
  if video_handling == "slow_down":
136
  background_frame = background_frames[bg_frame_index % len(background_frames)]
 
 
 
137
  else: # video_handling == "loop"
138
  background_frame = background_frames[bg_frame_index % len(background_frames)]
139
- nonlocal bg_frame_index
140
- bg_frame_index += 1
141
- background_image = Image.fromarray(background_frame)
142
- processed_image = process(pil_image, background_image, fast_mode)
143
  else:
144
  processed_image = pil_image # Default to original image if no background is selected
145
- return i, np.array(processed_image)
146
-
147
- with ThreadPoolExecutor(max_workers=4) as executor:
148
- # Submit all frame processing tasks
149
- future_to_index = {executor.submit(process_single_frame, i, frame): i for i, frame in enumerate(frames)}
150
-
151
- # As each future completes, process the result
152
- for future in as_completed(future_to_index):
153
- i, processed_image = future.result()
154
- processed_frames.append((i, processed_image))
155
-
156
- # Update elapsed time
157
- elapsed_time = time.time() - start_time
158
- # Sort the processed_frames based on index to maintain order
159
- processed_frames_sorted = sorted(processed_frames, key=lambda x: x[0])
160
-
161
- # Yield the first processed image if it's available
162
- if len(processed_frames_sorted) == 1:
163
- first_image = Image.fromarray(processed_frames_sorted[0][1])
164
- yield first_image, None, f"Processing frame {processed_frames_sorted[0][0]+1}... Elapsed time: {elapsed_time:.2f} seconds"
165
-
166
- # Sort all processed frames
167
- processed_frames_sorted = sorted(processed_frames, key=lambda x: x[0])
168
- final_frames = [frame for i, frame in processed_frames_sorted]
169
 
170
  # Create a new video from the processed frames
171
- processed_video = mp.ImageSequenceClip(final_frames, fps=fps)
172
 
173
  # Add the original audio back to the processed video
174
  processed_video = processed_video.set_audio(audio)
@@ -183,12 +136,42 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
183
  elapsed_time = time.time() - start_time
184
  yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
185
  # Return the path to the temporary file
186
- yield None, temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
187
 
188
  except Exception as e:
189
  print(f"Error: {e}")
190
  elapsed_time = time.time() - start_time
191
  yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
 
193
  with gr.Blocks(theme=gr.themes.Ocean()) as demo:
194
  gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.")
 
13
  import uuid
14
  import time
15
  import threading
 
16
 
17
  torch.set_float32_matmul_precision("medium")
18
 
 
60
  cleanup_thread = threading.Thread(target=cleanup_temp_files, daemon=True)
61
  cleanup_thread.start()
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  @spaces.GPU
65
  def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True):
 
77
  audio = video.audio
78
 
79
  # Extract frames at the specified FPS
80
+ frames = video.iter_frames(fps=fps)
81
 
82
+ # Process each frame for background removal
83
  processed_frames = []
84
+ yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds"
85
 
86
  if bg_type == "Video":
87
  background_video = mp.VideoFileClip(bg_video)
 
96
 
97
  bg_frame_index = 0 # Initialize background frame index
98
 
99
+ for i, frame in enumerate(frames):
 
100
  pil_image = Image.fromarray(frame)
101
  if bg_type == "Color":
102
  processed_image = process(pil_image, color, fast_mode)
 
105
  elif bg_type == "Video":
106
  if video_handling == "slow_down":
107
  background_frame = background_frames[bg_frame_index % len(background_frames)]
108
+ bg_frame_index += 1
109
+ background_image = Image.fromarray(background_frame)
110
+ processed_image = process(pil_image, background_image, fast_mode)
111
  else: # video_handling == "loop"
112
  background_frame = background_frames[bg_frame_index % len(background_frames)]
113
+ bg_frame_index += 1
114
+ background_image = Image.fromarray(background_frame)
115
+ processed_image = process(pil_image, background_image, fast_mode)
 
116
  else:
117
  processed_image = pil_image # Default to original image if no background is selected
118
+
119
+ processed_frames.append(np.array(processed_image))
120
+ elapsed_time = time.time() - start_time
121
+ yield processed_image, None, f"Processing frame {i+1}... Elapsed time: {elapsed_time:.2f} seconds"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  # Create a new video from the processed frames
124
+ processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
125
 
126
  # Add the original audio back to the processed video
127
  processed_video = processed_video.set_audio(audio)
 
136
  elapsed_time = time.time() - start_time
137
  yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
138
  # Return the path to the temporary file
139
+ yield processed_image, temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
140
 
141
  except Exception as e:
142
  print(f"Error: {e}")
143
  elapsed_time = time.time() - start_time
144
  yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
145
+ yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
146
+
147
+
148
+ def process(image, bg, fast_mode=False):
149
+ image_size = image.size
150
+ input_images = transform_image(image).unsqueeze(0).to("cuda")
151
+
152
+ # Select the model based on fast_mode
153
+ model = birefnet_lite if fast_mode else birefnet
154
+
155
+ # Prediction
156
+ with torch.no_grad():
157
+ preds = model(input_images)[-1].sigmoid().cpu()
158
+ pred = preds[0].squeeze()
159
+ pred_pil = transforms.ToPILImage()(pred)
160
+ mask = pred_pil.resize(image_size)
161
+
162
+ if isinstance(bg, str) and bg.startswith("#"):
163
+ color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
164
+ background = Image.new("RGBA", image_size, color_rgb + (255,))
165
+ elif isinstance(bg, Image.Image):
166
+ background = bg.convert("RGBA").resize(image_size)
167
+ else:
168
+ background = Image.open(bg).convert("RGBA").resize(image_size)
169
+
170
+ # Composite the image onto the background using the mask
171
+ image = Image.composite(image, background, mask)
172
+
173
+ return image
174
+
175
 
176
  with gr.Blocks(theme=gr.themes.Ocean()) as demo:
177
  gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.")