File size: 11,743 Bytes
99afdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import sys
import os
sys.path.append(os.getcwd())
import os
from tqdm import tqdm
from data_utils.utils import *
import torch.utils.data as data
from data_utils.mesh_dataset import SmplxDataset
from transformers import Wav2Vec2Processor


class MultiVidData():
    def __init__(self, 
                data_root, 
                speakers, 
                split='train', 
                limbscaling=False, 
                normalization=False,
                norm_method='new',
                split_trans_zero=False,
                num_frames=25,
                num_pre_frames=25,
                num_generate_length=None,
                aud_feat_win_size=None,
                aud_feat_dim=64,
                feat_method='mel_spec',
                context_info=False,
                smplx=False,
                audio_sr=16000,
                convert_to_6d=False,
                expression=False,
                config=None
                ):
        self.data_root = data_root
        self.speakers = speakers
        self.split = split
        if split == 'pre':
            self.split = 'train'
        self.norm_method=norm_method
        self.normalization = normalization
        self.limbscaling = limbscaling
        self.convert_to_6d = convert_to_6d
        self.num_frames=num_frames
        self.num_pre_frames=num_pre_frames
        if num_generate_length is None:
            self.num_generate_length = num_frames
        else:
            self.num_generate_length = num_generate_length
        self.split_trans_zero=split_trans_zero

        dataset = SmplxDataset
        
        if self.split_trans_zero:
            self.trans_dataset_list = []
            self.zero_dataset_list = []
        else:
            self.all_dataset_list = []
        self.dataset={}
        self.complete_data=[]
        self.config=config
        load_mode=self.config.dataset_load_mode
        
        ######################load with pickle file
        if load_mode=='pickle':
            import pickle
            import subprocess
            
            # store_file_path='/tmp/store.pkl'
            # cp /is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts/store.pkl /tmp/store.pkl
            # subprocess.run(f'cp /is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts/store.pkl {store_file_path}',shell=True)
            
            # f = open(self.config.store_file_path, 'rb+')
            f = open(self.split+config.Data.pklname, 'rb+')
            self.dataset=pickle.load(f)
            f.close()
            for key in self.dataset:
                self.complete_data.append(self.dataset[key].complete_data)
        ######################load with pickle file
                
        ######################load with a csv file
        elif load_mode=='csv':

            # 这里从我的一个code文件夹导入的,后续再完善进来
            try:
                sys.path.append(self.config.config_root_path)
                from config import config_path
                from csv_parser import csv_parse
                
            except ImportError as e:
                print(f'err: {e}')
                raise ImportError('config root path error...')


            for speaker_name in self.speakers:
                # df_intervals=pd.read_csv(self.config.voca_csv_file_path)
                df_intervals=None
                df_intervals=df_intervals[df_intervals['speaker']==speaker_name]
                df_intervals = df_intervals[df_intervals['dataset'] == self.split]

                print(f'speaker {speaker_name} train interval length: {len(df_intervals)}')
                for iter_index, (_, interval) in tqdm(
                        (enumerate(df_intervals.iterrows())),desc=f'load {speaker_name}'
                ):
                    
                    (
                        interval_index,
                        interval_speaker,
                        interval_video_fn,
                        interval_id,
                        
                        start_time,
                        end_time,
                        duration_time,
                        start_time_10,
                        over_flow_flag,
                        short_dur_flag,
                        
                        big_video_dir,
                        small_video_dir_name,
                        speaker_video_path,
                        
                        voca_basename,
                        json_basename,
                        wav_basename,
                        voca_top_clip_path,
                        voca_json_clip_path,
                        voca_wav_clip_path,
                        
                        audio_output_fn,
                        image_output_path,
                        pifpaf_output_path,
                        mp_output_path,
                        op_output_path,
                        deca_output_path,
                        pixie_output_path,
                        cam_output_path, 
                        ours_output_path,
                        merge_output_path,
                        multi_output_path,
                        gt_output_path,
                        ours_images_path,
                        pkl_fil_path,
                    )=csv_parse(interval)
                    
                    if not os.path.exists(pkl_fil_path) or not os.path.exists(audio_output_fn):
                        continue

                    key=f'{interval_video_fn}/{small_video_dir_name}'
                    self.dataset[key] = dataset(
                        data_root=pkl_fil_path,
                        speaker=speaker_name,
                        audio_fn=audio_output_fn,
                        audio_sr=audio_sr,
                        fps=num_frames,
                        feat_method=feat_method,
                        audio_feat_dim=aud_feat_dim,
                        train=(self.split == 'train'),
                        load_all=True,
                        split_trans_zero=self.split_trans_zero,
                        limbscaling=self.limbscaling,
                        num_frames=self.num_frames,
                        num_pre_frames=self.num_pre_frames,
                        num_generate_length=self.num_generate_length,
                        audio_feat_win_size=aud_feat_win_size,
                        context_info=context_info,
                        convert_to_6d=convert_to_6d,
                        expression=expression,
                        config=self.config
                    )
                    self.complete_data.append(self.dataset[key].complete_data)
        ######################load with a csv file
                
        ######################origin load method
        elif load_mode=='json':
            
            # if self.split == 'train':
            #     import pickle
            #     f = open('store.pkl', 'rb+')
            #     self.dataset=pickle.load(f)
            #     f.close()
            #     for key in self.dataset:
            #         self.complete_data.append(self.dataset[key].complete_data)
            # else:https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav
            # if config.Model.model_type == 'face':
            am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
            am_sr = 16000
            # else:
            #     am, am_sr = None, None
            for speaker_name in self.speakers:
                speaker_root = os.path.join(self.data_root, speaker_name)

                videos=[v for v in os.listdir(speaker_root) ]
                print(videos)

                haode = huaide = 0

                for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)):
                    source_vid=vid
                    # vid_pth=os.path.join(speaker_root, source_vid, 'images/half', self.split)
                    vid_pth = os.path.join(speaker_root, source_vid, self.split)
                    if smplx == 'pose':
                        seqs = [s for s in os.listdir(vid_pth) if (s.startswith('clip'))]
                    else:
                        try:
                            seqs = [s for s in os.listdir(vid_pth)]
                        except:
                            continue

                    for s in seqs:
                        seq_root=os.path.join(vid_pth, s)
                        key = seq_root # correspond to clip******
                        audio_fname = os.path.join(speaker_root, source_vid, self.split, s, '%s.wav' % (s))
                        motion_fname = os.path.join(speaker_root, source_vid, self.split, s, '%s.pkl' % (s))
                        if not os.path.isfile(audio_fname) or not os.path.isfile(motion_fname):
                            huaide = huaide + 1
                            continue

                        self.dataset[key]=dataset(
                            data_root=seq_root,
                            speaker=speaker_name,
                            motion_fn=motion_fname,
                            audio_fn=audio_fname,
                            audio_sr=audio_sr,
                            fps=num_frames,
                            feat_method=feat_method,
                            audio_feat_dim=aud_feat_dim,
                            train=(self.split=='train'),
                            load_all=True,
                            split_trans_zero=self.split_trans_zero,
                            limbscaling=self.limbscaling,
                            num_frames=self.num_frames,
                            num_pre_frames=self.num_pre_frames,
                            num_generate_length=self.num_generate_length,
                            audio_feat_win_size=aud_feat_win_size,
                            context_info=context_info,
                            convert_to_6d=convert_to_6d,
                            expression=expression,
                            config=self.config,
                            am=am,
                            am_sr=am_sr,
                            whole_video=config.Data.whole_video
                        )
                        self.complete_data.append(self.dataset[key].complete_data)
                        haode = haode + 1
                print("huaide:{}, haode:{}".format(huaide, haode))
            import pickle

            f = open(self.split+config.Data.pklname, 'wb')
            pickle.dump(self.dataset, f)
            f.close()
        ######################origin load method

        self.complete_data=np.concatenate(self.complete_data, axis=0)

        # assert self.complete_data.shape[-1] == (12+21+21)*2
        self.normalize_stats = {}

        self.data_mean = None
        self.data_std = None
    
    def get_dataset(self):
        self.normalize_stats['mean'] = self.data_mean
        self.normalize_stats['std'] = self.data_std

        for key in list(self.dataset.keys()):
            if self.dataset[key].complete_data.shape[0] < self.num_generate_length:
                continue
            self.dataset[key].num_generate_length = self.num_generate_length
            self.dataset[key].get_dataset(self.normalization, self.normalize_stats, self.split)
            self.all_dataset_list.append(self.dataset[key].all_dataset)
        
        if self.split_trans_zero:
            self.trans_dataset = data.ConcatDataset(self.trans_dataset_list)
            self.zero_dataset = data.ConcatDataset(self.zero_dataset_list)
        else:
            self.all_dataset = data.ConcatDataset(self.all_dataset_list)