Spaces:
Running
Running
File size: 8,257 Bytes
99afdfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import time
import numpy as np
import torch
import torch.nn.functional as F
from scipy import linalg
import math
from data_utils.rotation_conversion import axis_angle_to_matrix, matrix_to_rotation_6d
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning) # ignore warnings
change_angle = torch.tensor([6.0181e-05, 5.1597e-05, 2.1344e-04, 2.1899e-04])
class EmbeddingSpaceEvaluator:
def __init__(self, ae, vae, device):
# init embed net
self.ae = ae
# self.vae = vae
# storage
self.real_feat_list = []
self.generated_feat_list = []
self.real_joints_list = []
self.generated_joints_list = []
self.real_6d_list = []
self.generated_6d_list = []
self.audio_beat_list = []
def reset(self):
self.real_feat_list = []
self.generated_feat_list = []
def get_no_of_samples(self):
return len(self.real_feat_list)
def push_samples(self, generated_poses, real_poses):
# self.net.eval()
# convert poses to latent features
real_feat, real_poses = self.ae.extract(real_poses)
generated_feat, generated_poses = self.ae.extract(generated_poses)
num_joints = real_poses.shape[2] // 3
real_feat = real_feat.squeeze()
generated_feat = generated_feat.reshape(generated_feat.shape[0]*generated_feat.shape[1], -1)
self.real_feat_list.append(real_feat.data.cpu().numpy())
self.generated_feat_list.append(generated_feat.data.cpu().numpy())
# real_poses = matrix_to_rotation_6d(axis_angle_to_matrix(real_poses.reshape(-1, 3))).reshape(-1, num_joints, 6)
# generated_poses = matrix_to_rotation_6d(axis_angle_to_matrix(generated_poses.reshape(-1, 3))).reshape(-1, num_joints, 6)
#
# self.real_feat_list.append(real_poses.data.cpu().numpy())
# self.generated_feat_list.append(generated_poses.data.cpu().numpy())
def push_joints(self, generated_poses, real_poses):
self.real_joints_list.append(real_poses.data.cpu())
self.generated_joints_list.append(generated_poses.squeeze().data.cpu())
def push_aud(self, aud):
self.audio_beat_list.append(aud.squeeze().data.cpu())
def get_MAAC(self):
ang_vel_list = []
for real_joints in self.real_joints_list:
real_joints[:, 15:21] = real_joints[:, 16:22]
vec = real_joints[:, 15:21] - real_joints[:, 13:19]
inner_product = torch.einsum('kij,kij->ki', [vec[:, 2:], vec[:, :-2]])
inner_product = torch.clamp(inner_product, -1, 1, out=None)
angle = torch.acos(inner_product) / math.pi
ang_vel = (angle[1:] - angle[:-1]).abs().mean(dim=0)
ang_vel_list.append(ang_vel.unsqueeze(dim=0))
all_vel = torch.cat(ang_vel_list, dim=0)
MAAC = all_vel.mean(dim=0)
return MAAC
def get_BCscore(self):
thres = 0.01
sigma = 0.1
sum_1 = 0
total_beat = 0
for joints, audio_beat_time in zip(self.generated_joints_list, self.audio_beat_list):
motion_beat_time = []
if joints.dim() == 4:
joints = joints[0]
joints[:, 15:21] = joints[:, 16:22]
vec = joints[:, 15:21] - joints[:, 13:19]
inner_product = torch.einsum('kij,kij->ki', [vec[:, 2:], vec[:, :-2]])
inner_product = torch.clamp(inner_product, -1, 1, out=None)
angle = torch.acos(inner_product) / math.pi
ang_vel = (angle[1:] - angle[:-1]).abs() / change_angle / len(change_angle)
angle_diff = torch.cat((torch.zeros(1, 4), ang_vel), dim=0)
sum_2 = 0
for i in range(angle_diff.shape[1]):
motion_beat_time = []
for t in range(1, joints.shape[0]-1):
if (angle_diff[t][i] < angle_diff[t - 1][i] and angle_diff[t][i] < angle_diff[t + 1][i]):
if (angle_diff[t - 1][i] - angle_diff[t][i] >= thres or angle_diff[t + 1][i] - angle_diff[
t][i] >= thres):
motion_beat_time.append(float(t) / 30.0)
if (len(motion_beat_time) == 0):
continue
motion_beat_time = torch.tensor(motion_beat_time)
sum = 0
for audio in audio_beat_time:
sum += np.power(math.e, -(np.power((audio.item() - motion_beat_time), 2)).min() / (2 * sigma * sigma))
sum_2 = sum_2 + sum
total_beat = total_beat + len(audio_beat_time)
sum_1 = sum_1 + sum_2
return sum_1/total_beat
def get_scores(self):
generated_feats = np.vstack(self.generated_feat_list)
real_feats = np.vstack(self.real_feat_list)
def frechet_distance(samples_A, samples_B):
A_mu = np.mean(samples_A, axis=0)
A_sigma = np.cov(samples_A, rowvar=False)
B_mu = np.mean(samples_B, axis=0)
B_sigma = np.cov(samples_B, rowvar=False)
try:
frechet_dist = self.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma)
except ValueError:
frechet_dist = 1e+10
return frechet_dist
####################################################################
# frechet distance
frechet_dist = frechet_distance(generated_feats, real_feats)
####################################################################
# distance between real and generated samples on the latent feature space
dists = []
for i in range(real_feats.shape[0]):
d = np.sum(np.absolute(real_feats[i] - generated_feats[i])) # MAE
dists.append(d)
feat_dist = np.mean(dists)
return frechet_dist, feat_dist
@staticmethod
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
""" from https://github.com/mseitzer/pytorch-fid/blob/master/fid_score.py """
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean) |