File size: 8,257 Bytes
99afdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import time

import numpy as np
import torch
import torch.nn.functional as F
from scipy import linalg
import math
from data_utils.rotation_conversion import axis_angle_to_matrix, matrix_to_rotation_6d

import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)  # ignore warnings


change_angle = torch.tensor([6.0181e-05, 5.1597e-05, 2.1344e-04, 2.1899e-04])
class EmbeddingSpaceEvaluator:
    def __init__(self, ae, vae, device):

        # init embed net
        self.ae = ae
        # self.vae = vae

        # storage
        self.real_feat_list = []
        self.generated_feat_list = []
        self.real_joints_list = []
        self.generated_joints_list = []
        self.real_6d_list = []
        self.generated_6d_list = []
        self.audio_beat_list = []

    def reset(self):
        self.real_feat_list = []
        self.generated_feat_list = []

    def get_no_of_samples(self):
        return len(self.real_feat_list)

    def push_samples(self, generated_poses, real_poses):
        # self.net.eval()
        # convert poses to latent features
        real_feat, real_poses = self.ae.extract(real_poses)
        generated_feat, generated_poses = self.ae.extract(generated_poses)

        num_joints = real_poses.shape[2] // 3

        real_feat = real_feat.squeeze()
        generated_feat = generated_feat.reshape(generated_feat.shape[0]*generated_feat.shape[1], -1)

        self.real_feat_list.append(real_feat.data.cpu().numpy())
        self.generated_feat_list.append(generated_feat.data.cpu().numpy())

        # real_poses = matrix_to_rotation_6d(axis_angle_to_matrix(real_poses.reshape(-1, 3))).reshape(-1, num_joints, 6)
        # generated_poses = matrix_to_rotation_6d(axis_angle_to_matrix(generated_poses.reshape(-1, 3))).reshape(-1, num_joints, 6)
        #
        # self.real_feat_list.append(real_poses.data.cpu().numpy())
        # self.generated_feat_list.append(generated_poses.data.cpu().numpy())

    def push_joints(self, generated_poses, real_poses):
        self.real_joints_list.append(real_poses.data.cpu())
        self.generated_joints_list.append(generated_poses.squeeze().data.cpu())

    def push_aud(self, aud):
        self.audio_beat_list.append(aud.squeeze().data.cpu())

    def get_MAAC(self):
        ang_vel_list = []
        for real_joints in self.real_joints_list:
            real_joints[:, 15:21] = real_joints[:, 16:22]
            vec = real_joints[:, 15:21] - real_joints[:, 13:19]
            inner_product = torch.einsum('kij,kij->ki', [vec[:, 2:], vec[:, :-2]])
            inner_product = torch.clamp(inner_product, -1, 1, out=None)
            angle = torch.acos(inner_product) / math.pi
            ang_vel = (angle[1:] - angle[:-1]).abs().mean(dim=0)
            ang_vel_list.append(ang_vel.unsqueeze(dim=0))
        all_vel = torch.cat(ang_vel_list, dim=0)
        MAAC = all_vel.mean(dim=0)
        return MAAC

    def get_BCscore(self):
        thres = 0.01
        sigma = 0.1
        sum_1 = 0
        total_beat = 0
        for joints, audio_beat_time in zip(self.generated_joints_list, self.audio_beat_list):
            motion_beat_time = []
            if joints.dim() == 4:
                joints = joints[0]
            joints[:, 15:21] = joints[:, 16:22]
            vec = joints[:, 15:21] - joints[:, 13:19]
            inner_product = torch.einsum('kij,kij->ki', [vec[:, 2:], vec[:, :-2]])
            inner_product = torch.clamp(inner_product, -1, 1, out=None)
            angle = torch.acos(inner_product) / math.pi
            ang_vel = (angle[1:] - angle[:-1]).abs() / change_angle / len(change_angle)

            angle_diff = torch.cat((torch.zeros(1, 4), ang_vel), dim=0)

            sum_2 = 0
            for i in range(angle_diff.shape[1]):
                motion_beat_time = []
                for t in range(1, joints.shape[0]-1):
                    if (angle_diff[t][i] < angle_diff[t - 1][i] and angle_diff[t][i] < angle_diff[t + 1][i]):
                        if (angle_diff[t - 1][i] - angle_diff[t][i] >= thres or angle_diff[t + 1][i] - angle_diff[
                            t][i] >= thres):
                            motion_beat_time.append(float(t) / 30.0)
                if (len(motion_beat_time) == 0):
                    continue
                motion_beat_time = torch.tensor(motion_beat_time)
                sum = 0
                for audio in audio_beat_time:
                    sum += np.power(math.e, -(np.power((audio.item() - motion_beat_time), 2)).min() / (2 * sigma * sigma))
                sum_2 = sum_2 + sum
                total_beat = total_beat + len(audio_beat_time)
            sum_1 = sum_1 + sum_2
        return sum_1/total_beat


    def get_scores(self):
        generated_feats = np.vstack(self.generated_feat_list)
        real_feats = np.vstack(self.real_feat_list)

        def frechet_distance(samples_A, samples_B):
            A_mu = np.mean(samples_A, axis=0)
            A_sigma = np.cov(samples_A, rowvar=False)
            B_mu = np.mean(samples_B, axis=0)
            B_sigma = np.cov(samples_B, rowvar=False)
            try:
                frechet_dist = self.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma)
            except ValueError:
                frechet_dist = 1e+10
            return frechet_dist

        ####################################################################
        # frechet distance
        frechet_dist = frechet_distance(generated_feats, real_feats)

        ####################################################################
        # distance between real and generated samples on the latent feature space
        dists = []
        for i in range(real_feats.shape[0]):
            d = np.sum(np.absolute(real_feats[i] - generated_feats[i]))  # MAE
            dists.append(d)
        feat_dist = np.mean(dists)

        return frechet_dist, feat_dist

    @staticmethod
    def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
        """ from https://github.com/mseitzer/pytorch-fid/blob/master/fid_score.py """
        """Numpy implementation of the Frechet Distance.
        The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
        and X_2 ~ N(mu_2, C_2) is
                d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
        Stable version by Dougal J. Sutherland.
        Params:
        -- mu1   : Numpy array containing the activations of a layer of the
                   inception net (like returned by the function 'get_predictions')
                   for generated samples.
        -- mu2   : The sample mean over activations, precalculated on an
                   representative data set.
        -- sigma1: The covariance matrix over activations for generated samples.
        -- sigma2: The covariance matrix over activations, precalculated on an
                   representative data set.
        Returns:
        --   : The Frechet Distance.
        """

        mu1 = np.atleast_1d(mu1)
        mu2 = np.atleast_1d(mu2)

        sigma1 = np.atleast_2d(sigma1)
        sigma2 = np.atleast_2d(sigma2)

        assert mu1.shape == mu2.shape, \
            'Training and test mean vectors have different lengths'
        assert sigma1.shape == sigma2.shape, \
            'Training and test covariances have different dimensions'

        diff = mu1 - mu2

        # Product might be almost singular
        covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
        if not np.isfinite(covmean).all():
            msg = ('fid calculation produces singular product; '
                   'adding %s to diagonal of cov estimates') % eps
            print(msg)
            offset = np.eye(sigma1.shape[0]) * eps
            covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

        # Numerical error might give slight imaginary component
        if np.iscomplexobj(covmean):
            if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
                m = np.max(np.abs(covmean.imag))
                raise ValueError('Imaginary component {}'.format(m))
            covmean = covmean.real

        tr_covmean = np.trace(covmean)

        return (diff.dot(diff) + np.trace(sigma1) +
                np.trace(sigma2) - 2 * tr_covmean)