Spaces:
Sleeping
Sleeping
File size: 13,798 Bytes
99afdfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import os
import sys
import torch
from torch.optim.lr_scheduler import StepLR
sys.path.append(os.getcwd())
from nets.layers import *
from nets.base import TrainWrapperBaseClass
from nets.spg.gated_pixelcnn_v2 import GatedPixelCNN as pixelcnn
from nets.spg.vqvae_1d import VQVAE as s2g_body, Wav2VecEncoder
from nets.spg.vqvae_1d import AudioEncoder
from nets.utils import parse_audio, denormalize
from data_utils import get_mfcc, get_melspec, get_mfcc_old, get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from sklearn.preprocessing import normalize
from data_utils.lower_body import c_index, c_index_3d, c_index_6d
from data_utils.utils import smooth_geom, get_mfcc_sepa
class TrainWrapper(TrainWrapperBaseClass):
'''
a wrapper receving a batch from data_utils and calculate loss
'''
def __init__(self, args, config):
self.args = args
self.config = config
self.device = torch.device(self.args.gpu)
self.global_step = 0
self.convert_to_6d = self.config.Data.pose.convert_to_6d
self.expression = self.config.Data.pose.expression
self.epoch = 0
self.init_params()
self.num_classes = 4
self.audio = True
self.composition = self.config.Model.composition
self.bh_model = self.config.Model.bh_model
if self.audio:
self.audioencoder = AudioEncoder(in_dim=64, num_hiddens=256, num_residual_layers=2, num_residual_hiddens=256).to(self.device)
else:
self.audioencoder = None
if self.convert_to_6d:
dim, layer = 512, 10
else:
dim, layer = 256, 15
self.generator = pixelcnn(2048, dim, layer, self.num_classes, self.audio, self.bh_model).to(self.device)
self.g_body = s2g_body(self.each_dim[1], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024,
num_residual_layers=2, num_residual_hiddens=512).to(self.device)
self.g_hand = s2g_body(self.each_dim[2], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024,
num_residual_layers=2, num_residual_hiddens=512).to(self.device)
model_path = self.config.Model.vq_path
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
self.g_body.load_state_dict(model_ckpt['generator']['g_body'])
self.g_hand.load_state_dict(model_ckpt['generator']['g_hand'])
if torch.cuda.device_count() > 1:
self.g_body = torch.nn.DataParallel(self.g_body, device_ids=[0, 1])
self.g_hand = torch.nn.DataParallel(self.g_hand, device_ids=[0, 1])
self.generator = torch.nn.DataParallel(self.generator, device_ids=[0, 1])
if self.audioencoder is not None:
self.audioencoder = torch.nn.DataParallel(self.audioencoder, device_ids=[0, 1])
self.discriminator = None
if self.convert_to_6d:
self.c_index = c_index_6d
else:
self.c_index = c_index_3d
super().__init__(args, config)
def init_optimizer(self):
print('using Adam')
self.generator_optimizer = optim.Adam(
self.generator.parameters(),
lr=self.config.Train.learning_rate.generator_learning_rate,
betas=[0.9, 0.999]
)
if self.audioencoder is not None:
opt = self.config.Model.AudioOpt
if opt == 'Adam':
self.audioencoder_optimizer = optim.Adam(
self.audioencoder.parameters(),
lr=self.config.Train.learning_rate.generator_learning_rate,
betas=[0.9, 0.999]
)
else:
print('using SGD')
self.audioencoder_optimizer = optim.SGD(
filter(lambda p: p.requires_grad,self.audioencoder.parameters()),
lr=self.config.Train.learning_rate.generator_learning_rate*10,
momentum=0.9,
nesterov=False,
)
def state_dict(self):
model_state = {
'generator': self.generator.state_dict(),
'generator_optim': self.generator_optimizer.state_dict(),
'audioencoder': self.audioencoder.state_dict() if self.audio else None,
'audioencoder_optim': self.audioencoder_optimizer.state_dict() if self.audio else None,
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None,
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None
}
return model_state
def load_state_dict(self, state_dict):
from collections import OrderedDict
new_state_dict = OrderedDict() # create new OrderedDict that does not contain `module.`
for k, v in state_dict.items():
sub_dict = OrderedDict()
if v is not None:
for k1, v1 in v.items():
name = k1.replace('module.', '')
sub_dict[name] = v1
new_state_dict[k] = sub_dict
state_dict = new_state_dict
if 'generator' in state_dict:
self.generator.load_state_dict(state_dict['generator'])
else:
self.generator.load_state_dict(state_dict)
if 'generator_optim' in state_dict and self.generator_optimizer is not None:
self.generator_optimizer.load_state_dict(state_dict['generator_optim'])
if self.discriminator is not None:
self.discriminator.load_state_dict(state_dict['discriminator'])
if 'discriminator_optim' in state_dict and self.discriminator_optimizer is not None:
self.discriminator_optimizer.load_state_dict(state_dict['discriminator_optim'])
if 'audioencoder' in state_dict and self.audioencoder is not None:
self.audioencoder.load_state_dict(state_dict['audioencoder'])
def init_params(self):
if self.config.Data.pose.convert_to_6d:
scale = 2
else:
scale = 1
global_orient = round(0 * scale)
leye_pose = reye_pose = round(0 * scale)
jaw_pose = round(0 * scale)
body_pose = round((63 - 24) * scale)
left_hand_pose = right_hand_pose = round(45 * scale)
if self.expression:
expression = 100
else:
expression = 0
b_j = 0
jaw_dim = jaw_pose
b_e = b_j + jaw_dim
eye_dim = leye_pose + reye_pose
b_b = b_e + eye_dim
body_dim = global_orient + body_pose
b_h = b_b + body_dim
hand_dim = left_hand_pose + right_hand_pose
b_f = b_h + hand_dim
face_dim = expression
self.dim_list = [b_j, b_e, b_b, b_h, b_f]
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim
self.pose = int(self.full_dim / round(3 * scale))
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]
def __call__(self, bat):
# assert (not self.args.infer), "infer mode"
self.global_step += 1
total_loss = None
loss_dict = {}
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
id = bat['speaker'].to(self.device) - 20
# id = F.one_hot(id, self.num_classes)
poses = poses[:, self.c_index, :]
aud = aud.permute(0, 2, 1)
gt_poses = poses.permute(0, 2, 1)
with torch.no_grad():
self.g_body.eval()
self.g_hand.eval()
if torch.cuda.device_count() > 1:
_, body_latents = self.g_body.module.encode(gt_poses=gt_poses[..., :self.each_dim[1]], id=id)
_, hand_latents = self.g_hand.module.encode(gt_poses=gt_poses[..., self.each_dim[1]:], id=id)
else:
_, body_latents = self.g_body.encode(gt_poses=gt_poses[..., :self.each_dim[1]], id=id)
_, hand_latents = self.g_hand.encode(gt_poses=gt_poses[..., self.each_dim[1]:], id=id)
latents = torch.cat([body_latents.unsqueeze(dim=-1), hand_latents.unsqueeze(dim=-1)], dim=-1)
latents = latents.detach()
if self.audio:
audio = self.audioencoder(aud[:, :].transpose(1, 2), frame_num=latents.shape[1]*4).unsqueeze(dim=-1).repeat(1, 1, 1, 2)
logits = self.generator(latents[:, :], id, audio)
else:
logits = self.generator(latents, id)
logits = logits.permute(0, 2, 3, 1).contiguous()
self.generator_optimizer.zero_grad()
if self.audio:
self.audioencoder_optimizer.zero_grad()
loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), latents.view(-1))
loss.backward()
grad = torch.nn.utils.clip_grad_norm(self.generator.parameters(), self.config.Train.max_gradient_norm)
if torch.isnan(grad).sum() > 0:
print('fuck')
loss_dict['grad'] = grad.item()
loss_dict['ce_loss'] = loss.item()
self.generator_optimizer.step()
if self.audio:
self.audioencoder_optimizer.step()
return total_loss, loss_dict
def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, exp=None, var=None, w_pre=False, rand=None,
continuity=False, id=None, fps=15, sr=22000, B=1, am=None, am_sr=None, frame=0,**kwargs):
'''
initial_pose: (B, C, T), normalized
(aud_fn, txgfile) -> generated motion (B, T, C)
'''
output = []
assert self.args.infer, "train mode"
self.generator.eval()
self.g_body.eval()
self.g_hand.eval()
if continuity:
aud_feat, gap = get_mfcc_sepa(aud_fn, sr=sr, fps=fps)
else:
aud_feat = get_mfcc_ta(aud_fn, sr=sr, fps=fps, smlpx=True, type='mfcc', am=am)
aud_feat = aud_feat.transpose(1, 0)
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device)
if id is None:
id = torch.tensor([0]).to(self.device)
else:
id = id.repeat(B)
with torch.no_grad():
aud_feat = aud_feat.permute(0, 2, 1)
if continuity:
self.audioencoder.eval()
pre_pose = {}
pre_pose['b'] = pre_pose['h'] = None
pre_latents, pre_audio, body_0, hand_0 = self.infer(aud_feat[:, :gap], frame, id, B, pre_pose=pre_pose)
pre_pose['b'] = body_0[:, :, -4:].transpose(1,2)
pre_pose['h'] = hand_0[:, :, -4:].transpose(1,2)
_, _, body_1, hand_1 = self.infer(aud_feat[:, gap:], frame, id, B, pre_latents, pre_audio, pre_pose)
body = torch.cat([body_0, body_1], dim=2)
hand = torch.cat([hand_0, hand_1], dim=2)
else:
if self.audio:
self.audioencoder.eval()
audio = self.audioencoder(aud_feat.transpose(1, 2), frame_num=frame).unsqueeze(dim=-1).repeat(1, 1, 1, 2)
latents = self.generator.generate(id, shape=[audio.shape[2], 2], batch_size=B, aud_feat=audio)
else:
latents = self.generator.generate(id, shape=[aud_feat.shape[1]//4, 2], batch_size=B)
body_latents = latents[..., 0]
hand_latents = latents[..., 1]
body, _ = self.g_body.decode(b=body_latents.shape[0], w=body_latents.shape[1], latents=body_latents)
hand, _ = self.g_hand.decode(b=hand_latents.shape[0], w=hand_latents.shape[1], latents=hand_latents)
pred_poses = torch.cat([body, hand], dim=1).transpose(1,2).cpu().numpy()
output = pred_poses
return output
def infer(self, aud_feat, frame, id, B, pre_latents=None, pre_audio=None, pre_pose=None):
audio = self.audioencoder(aud_feat.transpose(1, 2), frame_num=frame).unsqueeze(dim=-1).repeat(1, 1, 1, 2)
latents = self.generator.generate(id, shape=[audio.shape[2], 2], batch_size=B, aud_feat=audio,
pre_latents=pre_latents, pre_audio=pre_audio)
body_latents = latents[..., 0]
hand_latents = latents[..., 1]
body, _ = self.g_body.decode(b=body_latents.shape[0], w=body_latents.shape[1],
latents=body_latents, pre_state=pre_pose['b'])
hand, _ = self.g_hand.decode(b=hand_latents.shape[0], w=hand_latents.shape[1],
latents=hand_latents, pre_state=pre_pose['h'])
return latents, audio, body, hand
def generate(self, aud, id, frame_num=0):
self.generator.eval()
self.g_body.eval()
self.g_hand.eval()
aud_feat = aud.permute(0, 2, 1)
if self.audio:
self.audioencoder.eval()
audio = self.audioencoder(aud_feat.transpose(1, 2), frame_num=frame_num).unsqueeze(dim=-1).repeat(1, 1, 1, 2)
latents = self.generator.generate(id, shape=[audio.shape[2], 2], batch_size=aud.shape[0], aud_feat=audio)
else:
latents = self.generator.generate(id, shape=[aud_feat.shape[1] // 4, 2], batch_size=aud.shape[0])
body_latents = latents[..., 0]
hand_latents = latents[..., 1]
body = self.g_body.decode(b=body_latents.shape[0], w=body_latents.shape[1], latents=body_latents)
hand = self.g_hand.decode(b=hand_latents.shape[0], w=hand_latents.shape[1], latents=hand_latents)
pred_poses = torch.cat([body, hand], dim=1).transpose(1, 2)
return pred_poses
|