File size: 11,747 Bytes
99afdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import sys

from torch.optim.lr_scheduler import StepLR

sys.path.append(os.getcwd())

from nets.layers import *
from nets.base import TrainWrapperBaseClass
from nets.spg.s2glayers import Generator as G_S2G, Discriminator as D_S2G
from nets.spg.vqvae_1d import VQVAE as s2g_body
from nets.utils import parse_audio, denormalize
from data_utils import get_mfcc, get_melspec, get_mfcc_old, get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from sklearn.preprocessing import normalize

from data_utils.lower_body import c_index, c_index_3d, c_index_6d


class TrainWrapper(TrainWrapperBaseClass):
    '''
    a wrapper receving a batch from data_utils and calculate loss
    '''

    def __init__(self, args, config):
        self.args = args
        self.config = config
        self.device = torch.device(self.args.gpu)
        self.global_step = 0

        self.convert_to_6d = self.config.Data.pose.convert_to_6d
        self.expression = self.config.Data.pose.expression
        self.epoch = 0
        self.init_params()
        self.num_classes = 4
        self.composition = self.config.Model.composition
        if self.composition:
            self.g_body = s2g_body(self.each_dim[1], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024,
                                   num_residual_layers=2, num_residual_hiddens=512).to(self.device)
            self.g_hand = s2g_body(self.each_dim[2], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024,
                                   num_residual_layers=2, num_residual_hiddens=512).to(self.device)
        else:
            self.g = s2g_body(self.each_dim[1] + self.each_dim[2], embedding_dim=64, num_embeddings=config.Model.code_num,
                              num_hiddens=1024, num_residual_layers=2, num_residual_hiddens=512).to(self.device)

        self.discriminator = None

        if self.convert_to_6d:
            self.c_index = c_index_6d
        else:
            self.c_index = c_index_3d

        super().__init__(args, config)

    def init_optimizer(self):
        print('using Adam')
        if self.composition:
            self.g_body_optimizer = optim.Adam(
                self.g_body.parameters(),
                lr=self.config.Train.learning_rate.generator_learning_rate,
                betas=[0.9, 0.999]
            )
            self.g_hand_optimizer = optim.Adam(
                self.g_hand.parameters(),
                lr=self.config.Train.learning_rate.generator_learning_rate,
                betas=[0.9, 0.999]
            )
        else:
            self.g_optimizer = optim.Adam(
                self.g.parameters(),
                lr=self.config.Train.learning_rate.generator_learning_rate,
                betas=[0.9, 0.999]
            )

    def state_dict(self):
        if self.composition:
            model_state = {
                'g_body': self.g_body.state_dict(),
                'g_body_optim': self.g_body_optimizer.state_dict(),
                'g_hand': self.g_hand.state_dict(),
                'g_hand_optim': self.g_hand_optimizer.state_dict(),
                'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None,
                'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None
            }
        else:
            model_state = {
                'g': self.g.state_dict(),
                'g_optim': self.g_optimizer.state_dict(),
                'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None,
                'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None
            }
        return model_state

    def init_params(self):
        if self.config.Data.pose.convert_to_6d:
            scale = 2
        else:
            scale = 1

        global_orient = round(0 * scale)
        leye_pose = reye_pose = round(0 * scale)
        jaw_pose = round(0 * scale)
        body_pose = round((63 - 24) * scale)
        left_hand_pose = right_hand_pose = round(45 * scale)
        if self.expression:
            expression = 100
        else:
            expression = 0

        b_j = 0
        jaw_dim = jaw_pose
        b_e = b_j + jaw_dim
        eye_dim = leye_pose + reye_pose
        b_b = b_e + eye_dim
        body_dim = global_orient + body_pose
        b_h = b_b + body_dim
        hand_dim = left_hand_pose + right_hand_pose
        b_f = b_h + hand_dim
        face_dim = expression

        self.dim_list = [b_j, b_e, b_b, b_h, b_f]
        self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim
        self.pose = int(self.full_dim / round(3 * scale))
        self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]

    def __call__(self, bat):
        # assert (not self.args.infer), "infer mode"
        self.global_step += 1

        total_loss = None
        loss_dict = {}

        aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)

        # id = bat['speaker'].to(self.device) - 20
        # id = F.one_hot(id, self.num_classes)

        poses = poses[:, self.c_index, :]
        gt_poses = poses.permute(0, 2, 1)
        b_poses = gt_poses[..., :self.each_dim[1]]
        h_poses = gt_poses[..., self.each_dim[1]:]

        if self.composition:
            loss = 0
            loss_dict, loss = self.vq_train(b_poses[:, :], 'b', self.g_body, loss_dict, loss)
            loss_dict, loss = self.vq_train(h_poses[:, :], 'h', self.g_hand, loss_dict, loss)
        else:
            loss = 0
            loss_dict, loss = self.vq_train(gt_poses[:, :], 'g', self.g, loss_dict, loss)

        return total_loss, loss_dict

    def vq_train(self, gt, name, model, dict, total_loss, pre=None):
        e_q_loss, x_recon = model(gt_poses=gt, pre_state=pre)
        loss, loss_dict = self.get_loss(pred_poses=x_recon, gt_poses=gt, e_q_loss=e_q_loss, pre=pre)
        # total_loss = total_loss + loss

        if name == 'b':
            optimizer_name = 'g_body_optimizer'
        elif name == 'h':
            optimizer_name = 'g_hand_optimizer'
        elif name == 'g':
            optimizer_name = 'g_optimizer'
        else:
            raise ValueError("model's name must be b or h")
        optimizer = getattr(self, optimizer_name)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        for key in list(loss_dict.keys()):
            dict[name + key] = loss_dict.get(key, 0).item()
        return dict, total_loss

    def get_loss(self,
                 pred_poses,
                 gt_poses,
                 e_q_loss,
                 pre=None
                 ):
        loss_dict = {}


        rec_loss = torch.mean(torch.abs(pred_poses - gt_poses))
        v_pr = pred_poses[:, 1:] - pred_poses[:, :-1]
        v_gt = gt_poses[:, 1:] - gt_poses[:, :-1]
        velocity_loss = torch.mean(torch.abs(v_pr - v_gt))

        if pre is None:
            f0_vel = 0
        else:
            v0_pr = pred_poses[:, 0] - pre[:, -1]
            v0_gt = gt_poses[:, 0] - pre[:, -1]
            f0_vel = torch.mean(torch.abs(v0_pr - v0_gt))

        gen_loss = rec_loss + e_q_loss + velocity_loss + f0_vel

        loss_dict['rec_loss'] = rec_loss
        loss_dict['velocity_loss'] = velocity_loss
        # loss_dict['e_q_loss'] = e_q_loss
        if pre is not None:
            loss_dict['f0_vel'] = f0_vel

        return gen_loss, loss_dict

    def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, exp=None, var=None, w_pre=False, continuity=False,
                       id=None, fps=15, sr=22000, smooth=False, **kwargs):
        '''
        initial_pose: (B, C, T), normalized
        (aud_fn, txgfile) -> generated motion (B, T, C)
        '''
        output = []

        assert self.args.infer, "train mode"
        if self.composition:
            self.g_body.eval()
            self.g_hand.eval()
        else:
            self.g.eval()

        if self.config.Data.pose.normalization:
            assert norm_stats is not None
            data_mean = norm_stats[0]
            data_std = norm_stats[1]

        # assert initial_pose.shape[-1] == pre_length
        if initial_pose is not None:
            gt = initial_pose[:, :, :].to(self.device).to(torch.float32)
            pre_poses = initial_pose[:, :, :15].permute(0, 2, 1).to(self.device).to(torch.float32)
            poses = initial_pose.permute(0, 2, 1).to(self.device).to(torch.float32)
            B = pre_poses.shape[0]
        else:
            gt = None
            pre_poses = None
            B = 1

        if type(aud_fn) == torch.Tensor:
            aud_feat = torch.tensor(aud_fn, dtype=torch.float32).to(self.device)
            num_poses_to_generate = aud_feat.shape[-1]
        else:
            aud_feat = get_mfcc_ta(aud_fn, sr=sr, fps=fps, smlpx=True, type='mfcc').transpose(1, 0)
            aud_feat = aud_feat[:, :]
            num_poses_to_generate = aud_feat.shape[-1]
            aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
            aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device)

        # pre_poses = torch.randn(pre_poses.shape).to(self.device).to(torch.float32)
        if id is None:
            id = F.one_hot(torch.tensor([[0]]), self.num_classes).to(self.device)

        with torch.no_grad():
            aud_feat = aud_feat.permute(0, 2, 1)
            gt_poses = gt[:, self.c_index].permute(0, 2, 1)
            if self.composition:
                if continuity:
                    pred_poses_body = []
                    pred_poses_hand = []
                    pre_b = None
                    pre_h = None
                    for i in range(5):
                        _, pred_body = self.g_body(gt_poses=gt_poses[:, i*60:(i+1)*60, :self.each_dim[1]], pre_state=pre_b)
                        pre_b = pred_body[..., -1:].transpose(1,2)
                        pred_poses_body.append(pred_body)
                        _, pred_hand = self.g_hand(gt_poses=gt_poses[:, i*60:(i+1)*60, self.each_dim[1]:], pre_state=pre_h)
                        pre_h = pred_hand[..., -1:].transpose(1,2)
                        pred_poses_hand.append(pred_hand)

                    pred_poses_body = torch.cat(pred_poses_body, dim=2)
                    pred_poses_hand = torch.cat(pred_poses_hand, dim=2)
                else:
                    _, pred_poses_body = self.g_body(gt_poses=gt_poses[..., :self.each_dim[1]], id=id)
                    _, pred_poses_hand = self.g_hand(gt_poses=gt_poses[..., self.each_dim[1]:], id=id)
                pred_poses = torch.cat([pred_poses_body, pred_poses_hand], dim=1)
            else:
                _, pred_poses = self.g(gt_poses=gt_poses, id=id)
            pred_poses = pred_poses.transpose(1, 2).cpu().numpy()
        output = pred_poses

        if self.config.Data.pose.normalization:
            output = denormalize(output, data_mean, data_std)

        if smooth:
            lamda = 0.8
            smooth_f = 10
            frame = 149
            for i in range(smooth_f):
                f = frame + i
                l = lamda * (i + 1) / smooth_f
                output[0, f] = (1 - l) * output[0, f - 1] + l * output[0, f]

        output = np.concatenate(output, axis=1)

        return output

    def load_state_dict(self, state_dict):
        if self.composition:
            self.g_body.load_state_dict(state_dict['g_body'])
            self.g_hand.load_state_dict(state_dict['g_hand'])
        else:
            self.g.load_state_dict(state_dict['g'])