File size: 8,504 Bytes
99afdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import sys
# os.environ["PYOPENGL_PLATFORM"] = "egl"
from transformers import Wav2Vec2Processor
from visualise.rendering import RenderTool

sys.path.append(os.getcwd())
from glob import glob

import numpy as np
import json
import smplx as smpl

from nets import *
from trainer.options import parse_args
from data_utils import torch_data
from trainer.config import load_JsonConfig

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from scripts.diversity import init_model, init_dataloader, get_vertices
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
import time


global_orient = torch.tensor([3.0747, -0.0158, -0.0152])


def infer(data_root, g_body, g_face, g_body2, exp_name, infer_loader, infer_set, device, norm_stats, smplx,
          smplx_model, rendertool, args=None, config=None, var=None):
    am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
    am_sr = 16000
    num_sample = 1
    face = False
    if face:
        body_static = torch.zeros([1, 162], device='cuda')
        body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1)
    stand = False
    j = 0
    gt_0 = None

    for bat in infer_loader:
        poses_ = bat['poses'].to(torch.float32).to(device)
        if poses_.shape[-1] == 300:
            j = j + 1
            if j > 1000:
                continue
            id = bat['speaker'].to('cuda') - 20
            if config.Data.pose.expression:
                expression = bat['expression'].to(device).to(torch.float32)
                poses = torch.cat([poses_, expression], dim=1)
            else:
                poses = poses_
            cur_wav_file = bat['aud_file'][0]
            betas = bat['betas'][0].to(torch.float64).to('cuda')
            # betas = torch.zeros([1, 300], dtype=torch.float64).to('cuda')
            gt = poses.to('cuda').squeeze().transpose(1, 0)
            if config.Data.pose.normalization:
                gt = denormalize(gt, norm_stats[0], norm_stats[1]).squeeze(dim=0)
            if config.Data.pose.convert_to_6d:
                if config.Data.pose.expression:
                    gt_exp = gt[:, -100:]
                    gt = gt[:, :-100]

                gt = gt.reshape(gt.shape[0], -1, 6)
                gt = matrix_to_axis_angle(rotation_6d_to_matrix(gt)).reshape(gt.shape[0], -1)
                gt = torch.cat([gt, gt_exp], -1)
            if face:
                gt = torch.cat([gt[:, :3], body_static.repeat(gt.shape[0], 1), gt[:, -100:]], dim=-1)

            result_list = [gt]

            # cur_wav_file = '.\\training_data\\french-V4.wav'

            # pred_face = g_face.infer_on_audio(cur_wav_file,
            #                                   initial_pose=poses_,
            #                                   norm_stats=None,
            #                                   w_pre=False,
            #                                   # id=id,
            #                                   frame=None,
            #                                   am=am,
            #                                   am_sr=am_sr
            #                                   )
            #
            # pred_face = torch.tensor(pred_face).squeeze().to('cuda')

            pred_face = torch.zeros([gt.shape[0], 103], device='cuda')
            pred_jaw = pred_face[:, :3]
            pred_face = pred_face[:, 3:]

            # id = torch.tensor([0], device='cuda')

            for i in range(num_sample):
                pred_res = g_body.infer_on_audio(cur_wav_file,
                                                 initial_pose=poses_,
                                                 norm_stats=norm_stats,
                                                 txgfile=None,
                                                 id=id,
                                                 var=var,
                                                 fps=30,
                                                 continuity=True,
                                                 smooth=False
                                                 )
                pred = torch.tensor(pred_res).squeeze().to('cuda')

                if pred.shape[0] < pred_face.shape[0]:
                    repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
                    pred = torch.cat([pred, repeat_frame], dim=0)
                else:
                    pred = pred[:pred_face.shape[0], :]

                if config.Data.pose.convert_to_6d:
                    pred = pred.reshape(pred.shape[0], -1, 6)
                    pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred))
                    pred = pred.reshape(pred.shape[0], -1)

                pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
                # pred[:, 9:12] = global_orient
                pred = part2full(pred, stand)
                if face:
                    pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
                # result_list[0] = poses2pred(result_list[0], stand)
                # if gt_0 is None:
                #     gt_0 = gt
                # pred = pred2poses(pred, gt_0)
                # result_list[0] = poses2poses(result_list[0], gt_0)

                result_list.append(pred)

            vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)

            result_list = [res.to('cpu') for res in result_list]
            dict = np.concatenate(result_list[1:], axis=0)
            file_name = 'visualise/video/' + config.Log.name + '/' + \
                        cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1]
            np.save(file_name, dict)

            rendertool._render_continuity(cur_wav_file, vertices_list[1], frame=60)


def main():
    parser = parse_args()
    args = parser.parse_args()
    device = torch.device(args.gpu)
    torch.cuda.set_device(device)

    config = load_JsonConfig(args.config_file)

    smplx = True

    os.environ['smplx_npz_path'] = config.smplx_npz_path
    os.environ['extra_joint_path'] = config.extra_joint_path
    os.environ['j14_regressor_path'] = config.j14_regressor_path

    print('init model...')
    body_model_name = 's2g_body_pixel'
    body_model_path = './experiments/2022-12-31-smplx_S2G-body-pixel-conti-wide/ckpt-99.pth'  # './experiments/2022-10-09-smplx_S2G-body-pixel-aud-3p/ckpt-99.pth'
    generator = init_model(body_model_name, body_model_path, args, config)

    # face_model_name = 's2g_face'
    # face_model_path = './experiments/2022-10-15-smplx_S2G-face-sgd-3p-wv2/ckpt-99.pth'  # './experiments/2022-09-28-smplx_S2G-face-faceformer-3d/ckpt-99.pth'
    # generator_face = init_model(face_model_name, face_model_path, args, config)
    generator_face = None
    print('init dataloader...')
    infer_set, infer_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config)

    print('init smlpx model...')
    dtype = torch.float64
    model_params = dict(model_path='E:/PycharmProjects/Motion-Projects/models',
                        model_type='smplx',
                        create_global_orient=True,
                        create_body_pose=True,
                        create_betas=True,
                        num_betas=300,
                        create_left_hand_pose=True,
                        create_right_hand_pose=True,
                        use_pca=False,
                        flat_hand_mean=False,
                        create_expression=True,
                        num_expression_coeffs=100,
                        num_pca_comps=12,
                        create_jaw_pose=True,
                        create_leye_pose=True,
                        create_reye_pose=True,
                        create_transl=False,
                        # gender='ne',
                        dtype=dtype, )
    smplx_model = smpl.create(**model_params).to('cuda')
    print('init rendertool...')
    rendertool = RenderTool('visualise/video/' + config.Log.name)

    infer(config.Data.data_root, generator, generator_face, None, args.exp_name, infer_loader, infer_set, device,
          norm_stats, smplx, smplx_model, rendertool, args, config, (None, None))


if __name__ == '__main__':
    main()