Spaces:
Sleeping
Sleeping
File size: 14,308 Bytes
99afdfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import sys
# os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
sys.path.append(os.getcwd())
from transformers import Wav2Vec2Processor
from glob import glob
import numpy as np
import json
import smplx as smpl
from nets import *
from trainer.options import parse_args
from data_utils import torch_data
from trainer.config import load_JsonConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
from visualise.rendering import RenderTool
import time
def init_model(model_name, model_path, args, config):
if model_name == 's2g_face':
generator = s2g_face(
args,
config,
)
elif model_name == 's2g_body_vq':
generator = s2g_body_vq(
args,
config,
)
elif model_name == 's2g_body_pixel':
generator = s2g_body_pixel(
args,
config,
)
elif model_name == 's2g_LS3DCG':
generator = LS3DCG(
args,
config,
)
else:
raise NotImplementedError
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
if model_name == 'smplx_S2G':
generator.generator.load_state_dict(model_ckpt['generator']['generator'])
elif 'generator' in list(model_ckpt.keys()):
generator.load_state_dict(model_ckpt['generator'])
else:
model_ckpt = {'generator': model_ckpt}
generator.load_state_dict(model_ckpt)
return generator
def init_dataloader(data_root, speakers, args, config):
if data_root.endswith('.csv'):
raise NotImplementedError
else:
data_class = torch_data
if 'smplx' in config.Model.model_name or 's2g' in config.Model.model_name:
data_base = torch_data(
data_root=data_root,
speakers=speakers,
split='test',
limbscaling=False,
normalization=config.Data.pose.normalization,
norm_method=config.Data.pose.norm_method,
split_trans_zero=False,
num_pre_frames=config.Data.pose.pre_pose_length,
num_generate_length=config.Data.pose.generate_length,
num_frames=30,
aud_feat_win_size=config.Data.aud.aud_feat_win_size,
aud_feat_dim=config.Data.aud.aud_feat_dim,
feat_method=config.Data.aud.feat_method,
smplx=True,
audio_sr=22000,
convert_to_6d=config.Data.pose.convert_to_6d,
expression=config.Data.pose.expression,
config=config
)
else:
data_base = torch_data(
data_root=data_root,
speakers=speakers,
split='val',
limbscaling=False,
normalization=config.Data.pose.normalization,
norm_method=config.Data.pose.norm_method,
split_trans_zero=False,
num_pre_frames=config.Data.pose.pre_pose_length,
aud_feat_win_size=config.Data.aud.aud_feat_win_size,
aud_feat_dim=config.Data.aud.aud_feat_dim,
feat_method=config.Data.aud.feat_method
)
if config.Data.pose.normalization:
norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy")
norm_stats = np.load(norm_stats_fn, allow_pickle=True)
data_base.data_mean = norm_stats[0]
data_base.data_std = norm_stats[1]
else:
norm_stats = None
data_base.get_dataset()
infer_set = data_base.all_dataset
infer_loader = data.DataLoader(data_base.all_dataset, batch_size=1, shuffle=False)
return infer_set, infer_loader, norm_stats
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
vertices_list = []
poses_list = []
expression = torch.zeros([1, 50])
for i in result_list:
vertices = []
poses = []
for j in range(i.shape[0]):
output = smplx_model(betas=betas,
expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
jaw_pose=i[j][0:3].unsqueeze_(dim=0),
leye_pose=i[j][3:6].unsqueeze_(dim=0),
reye_pose=i[j][6:9].unsqueeze_(dim=0),
global_orient=i[j][9:12].unsqueeze_(dim=0),
body_pose=i[j][12:75].unsqueeze_(dim=0),
left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
return_verts=True)
vertices.append(output.vertices.detach().cpu().numpy().squeeze())
# pose = torch.cat([output.body_pose, output.left_hand_pose, output.right_hand_pose], dim=1)
pose = output.body_pose
poses.append(pose.detach().cpu())
vertices = np.asarray(vertices)
vertices_list.append(vertices)
poses = torch.cat(poses, dim=0)
poses_list.append(poses)
if require_pose:
return vertices_list, poses_list
else:
return vertices_list, None
global_orient = torch.tensor([3.0747, -0.0158, -0.0152])
def infer(data_root, g_body, g_face, g_body2, exp_name, infer_loader, infer_set, device, norm_stats, smplx,
smplx_model, rendertool, args=None, config=None):
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
am_sr = 16000
num_sample = 1
face = False
if face:
body_static = torch.zeros([1, 162], device='cuda')
body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1)
stand = False
j = 0
gt_0 = None
for bat in infer_loader:
poses_ = bat['poses'].to(torch.float32).to(device)
if poses_.shape[-1] == 300:
j = j + 1
if j > 1000:
continue
id = bat['speaker'].to('cuda') - 20
if config.Data.pose.expression:
expression = bat['expression'].to(device).to(torch.float32)
poses = torch.cat([poses_, expression], dim=1)
else:
poses = poses_
cur_wav_file = bat['aud_file'][0]
betas = bat['betas'][0].to(torch.float64).to('cuda')
# betas = torch.zeros([1, 300], dtype=torch.float64).to('cuda')
gt = poses.to('cuda').squeeze().transpose(1, 0)
if config.Data.pose.normalization:
gt = denormalize(gt, norm_stats[0], norm_stats[1]).squeeze(dim=0)
if config.Data.pose.convert_to_6d:
if config.Data.pose.expression:
gt_exp = gt[:, -100:]
gt = gt[:, :-100]
gt = gt.reshape(gt.shape[0], -1, 6)
gt = matrix_to_axis_angle(rotation_6d_to_matrix(gt)).reshape(gt.shape[0], -1)
gt = torch.cat([gt, gt_exp], -1)
if face:
gt = torch.cat([gt[:, :3], body_static.repeat(gt.shape[0], 1), gt[:, -100:]], dim=-1)
result_list = [gt]
# cur_wav_file = '.\\training_data\\1_song_(Vocals).wav'
pred_face = g_face.infer_on_audio(cur_wav_file,
initial_pose=poses_,
norm_stats=None,
w_pre=False,
# id=id,
frame=None,
am=am,
am_sr=am_sr
)
pred_face = torch.tensor(pred_face).squeeze().to('cuda')
# pred_face = torch.zeros([gt.shape[0], 105])
if config.Data.pose.convert_to_6d:
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1)
pred_face = pred_face[:, 6:]
else:
pred_jaw = pred_face[:, :3]
pred_face = pred_face[:, 3:]
# id = torch.tensor([0], device='cuda')
for i in range(num_sample):
pred_res = g_body.infer_on_audio(cur_wav_file,
initial_pose=poses_,
norm_stats=norm_stats,
txgfile=None,
id=id,
# var=var,
fps=30,
w_pre=False
)
pred = torch.tensor(pred_res).squeeze().to('cuda')
if pred.shape[0] < pred_face.shape[0]:
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
pred = torch.cat([pred, repeat_frame], dim=0)
else:
pred = pred[:pred_face.shape[0], :]
body_or_face = False
if pred.shape[1] < 275:
body_or_face = True
if config.Data.pose.convert_to_6d:
pred = pred.reshape(pred.shape[0], -1, 6)
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred))
pred = pred.reshape(pred.shape[0], -1)
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
# pred[:, 9:12] = global_orient
pred = part2full(pred, stand)
if face:
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
result_list[0] = poses2pred(result_list[0], stand)
# if gt_0 is None:
# gt_0 = gt
# pred = pred2poses(pred, gt_0)
# result_list[0] = poses2poses(result_list[0], gt_0)
result_list.append(pred)
if g_body2 is not None:
pred_res2 = g_body2.infer_on_audio(cur_wav_file,
initial_pose=poses_,
norm_stats=norm_stats,
txgfile=None,
# var=var,
fps=30,
w_pre=False
)
pred2 = torch.tensor(pred_res2).squeeze().to('cuda')
pred2 = torch.cat([pred2[:, :3], pred2[:, 103:], pred2[:, 3:103]], dim=-1)
# pred2 = part2full(pred2, stand)
# result_list[0] = poses2pred(result_list[0], stand)
# if gt_0 is None:
# gt_0 = gt
# pred2 = pred2poses(pred2, gt_0)
# result_list[0] = poses2poses(result_list[0], gt_0)
result_list[1] = pred2
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
result_list = [res.to('cpu') for res in result_list]
dict = np.concatenate(result_list[1:], axis=0)
file_name = 'visualise/video/' + config.Log.name + '/' + \
cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1]
np.save(file_name, dict)
rendertool._render_sequences(cur_wav_file, vertices_list[1:], stand=stand, face=face)
def main():
parser = parse_args()
args = parser.parse_args()
device = torch.device(args.gpu)
torch.cuda.set_device(device)
config = load_JsonConfig(args.config_file)
face_model_name = args.face_model_name
face_model_path = args.face_model_path
body_model_name = args.body_model_name
body_model_path = args.body_model_path
smplx_path = './visualise/'
os.environ['smplx_npz_path'] = config.smplx_npz_path
os.environ['extra_joint_path'] = config.extra_joint_path
os.environ['j14_regressor_path'] = config.j14_regressor_path
print('init model...')
generator = init_model(body_model_name, body_model_path, args, config)
generator2 = None
generator_face = init_model(face_model_name, face_model_path, args, config)
print('init dataloader...')
infer_set, infer_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config)
print('init smlpx model...')
dtype = torch.float64
model_params = dict(model_path=smplx_path,
model_type='smplx',
create_global_orient=True,
create_body_pose=True,
create_betas=True,
num_betas=300,
create_left_hand_pose=True,
create_right_hand_pose=True,
use_pca=False,
flat_hand_mean=False,
create_expression=True,
num_expression_coeffs=100,
num_pca_comps=12,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=False,
# gender='ne',
dtype=dtype, )
smplx_model = smpl.create(**model_params).to('cuda')
print('init rendertool...')
rendertool = RenderTool('visualise/video/' + config.Log.name)
infer(config.Data.data_root, generator, generator_face, generator2, args.exp_name, infer_loader, infer_set, device,
norm_stats, True, smplx_model, rendertool, args, config)
if __name__ == '__main__':
main()
|