Spaces:
Running
Running
File size: 13,697 Bytes
99afdfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
'''
not exactly the same as the official repo but the results are good
'''
import sys
import os
from data_utils.lower_body import c_index_3d, c_index_6d
sys.path.append(os.getcwd())
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import math
from nets.base import TrainWrapperBaseClass
from nets.layers import SeqEncoder1D
from losses import KeypointLoss, L1Loss, KLLoss
from data_utils.utils import get_melspec, get_mfcc_psf, get_mfcc_ta
from nets.utils import denormalize
class Conv1d_tf(nn.Conv1d):
"""
Conv1d with the padding behavior from TF
modified from https://github.com/mlperf/inference/blob/482f6a3beb7af2fb0bd2d91d6185d5e71c22c55f/others/edge/object_detection/ssd_mobilenet/pytorch/utils.py
"""
def __init__(self, *args, **kwargs):
super(Conv1d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get("padding", "same")
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(
0, (out_size - 1) * self.stride[dim] + effective_filter_size - input_size
)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == "VALID":
return F.conv1d(
input,
self.weight,
self.bias,
self.stride,
padding=0,
dilation=self.dilation,
groups=self.groups,
)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
if rows_odd:
input = F.pad(input, [0, rows_odd])
return F.conv1d(
input,
self.weight,
self.bias,
self.stride,
padding=(padding_rows // 2),
dilation=self.dilation,
groups=self.groups,
)
def ConvNormRelu(in_channels, out_channels, type='1d', downsample=False, k=None, s=None, norm='bn', padding='valid'):
if k is None and s is None:
if not downsample:
k = 3
s = 1
else:
k = 4
s = 2
if type == '1d':
conv_block = Conv1d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
if norm == 'bn':
norm_block = nn.BatchNorm1d(out_channels)
elif norm == 'ln':
norm_block = nn.LayerNorm(out_channels)
elif type == '2d':
conv_block = Conv2d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
norm_block = nn.BatchNorm2d(out_channels)
else:
assert False
return nn.Sequential(
conv_block,
norm_block,
nn.LeakyReLU(0.2, True)
)
class Decoder(nn.Module):
def __init__(self, in_ch, out_ch):
super(Decoder, self).__init__()
self.up1 = nn.Sequential(
ConvNormRelu(in_ch // 2 + in_ch, in_ch // 2),
ConvNormRelu(in_ch // 2, in_ch // 2),
nn.Upsample(scale_factor=2, mode='nearest')
)
self.up2 = nn.Sequential(
ConvNormRelu(in_ch // 4 + in_ch // 2, in_ch // 4),
ConvNormRelu(in_ch // 4, in_ch // 4),
nn.Upsample(scale_factor=2, mode='nearest')
)
self.up3 = nn.Sequential(
ConvNormRelu(in_ch // 8 + in_ch // 4, in_ch // 8),
ConvNormRelu(in_ch // 8, in_ch // 8),
nn.Conv1d(in_ch // 8, out_ch, 1, 1)
)
def forward(self, x, x1, x2, x3):
x = F.interpolate(x, x3.shape[2])
x = torch.cat([x, x3], dim=1)
x = self.up1(x)
x = F.interpolate(x, x2.shape[2])
x = torch.cat([x, x2], dim=1)
x = self.up2(x)
x = F.interpolate(x, x1.shape[2])
x = torch.cat([x, x1], dim=1)
x = self.up3(x)
return x
class EncoderDecoder(nn.Module):
def __init__(self, n_frames, each_dim):
super().__init__()
self.n_frames = n_frames
self.down1 = nn.Sequential(
ConvNormRelu(64, 64, '1d', False),
ConvNormRelu(64, 128, '1d', False),
)
self.down2 = nn.Sequential(
ConvNormRelu(128, 128, '1d', False),
ConvNormRelu(128, 256, '1d', False),
)
self.down3 = nn.Sequential(
ConvNormRelu(256, 256, '1d', False),
ConvNormRelu(256, 512, '1d', False),
)
self.down4 = nn.Sequential(
ConvNormRelu(512, 512, '1d', False),
ConvNormRelu(512, 1024, '1d', False),
)
self.down = nn.MaxPool1d(kernel_size=2)
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.face_decoder = Decoder(1024, each_dim[0] + each_dim[3])
self.body_decoder = Decoder(1024, each_dim[1])
self.hand_decoder = Decoder(1024, each_dim[2])
def forward(self, spectrogram, time_steps=None):
if time_steps is None:
time_steps = self.n_frames
x1 = self.down1(spectrogram)
x = self.down(x1)
x2 = self.down2(x)
x = self.down(x2)
x3 = self.down3(x)
x = self.down(x3)
x = self.down4(x)
x = self.up(x)
face = self.face_decoder(x, x1, x2, x3)
body = self.body_decoder(x, x1, x2, x3)
hand = self.hand_decoder(x, x1, x2, x3)
return face, body, hand
class Generator(nn.Module):
def __init__(self,
each_dim,
training=False,
device=None
):
super().__init__()
self.training = training
self.device = device
self.encoderdecoder = EncoderDecoder(15, each_dim)
def forward(self, in_spec, time_steps=None):
if time_steps is not None:
self.gen_length = time_steps
face, body, hand = self.encoderdecoder(in_spec)
out = torch.cat([face, body, hand], dim=1)
out = out.transpose(1, 2)
return out
class Discriminator(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.net = nn.Sequential(
ConvNormRelu(input_dim, 128, '1d'),
ConvNormRelu(128, 256, '1d'),
nn.MaxPool1d(kernel_size=2),
ConvNormRelu(256, 256, '1d'),
ConvNormRelu(256, 512, '1d'),
nn.MaxPool1d(kernel_size=2),
ConvNormRelu(512, 512, '1d'),
ConvNormRelu(512, 1024, '1d'),
nn.MaxPool1d(kernel_size=2),
nn.Conv1d(1024, 1, 1, 1),
nn.Sigmoid()
)
def forward(self, x):
x = x.transpose(1, 2)
out = self.net(x)
return out
class TrainWrapper(TrainWrapperBaseClass):
def __init__(self, args, config) -> None:
self.args = args
self.config = config
self.device = torch.device(self.args.gpu)
self.global_step = 0
self.convert_to_6d = self.config.Data.pose.convert_to_6d
self.init_params()
self.generator = Generator(
each_dim=self.each_dim,
training=not self.args.infer,
device=self.device,
).to(self.device)
self.discriminator = Discriminator(
input_dim=self.each_dim[1] + self.each_dim[2] + 64
).to(self.device)
if self.convert_to_6d:
self.c_index = c_index_6d
else:
self.c_index = c_index_3d
self.MSELoss = KeypointLoss().to(self.device)
self.L1Loss = L1Loss().to(self.device)
super().__init__(args, config)
def init_params(self):
scale = 1
global_orient = round(0 * scale)
leye_pose = reye_pose = round(0 * scale)
jaw_pose = round(3 * scale)
body_pose = round((63 - 24) * scale)
left_hand_pose = right_hand_pose = round(45 * scale)
expression = 100
b_j = 0
jaw_dim = jaw_pose
b_e = b_j + jaw_dim
eye_dim = leye_pose + reye_pose
b_b = b_e + eye_dim
body_dim = global_orient + body_pose
b_h = b_b + body_dim
hand_dim = left_hand_pose + right_hand_pose
b_f = b_h + hand_dim
face_dim = expression
self.dim_list = [b_j, b_e, b_b, b_h, b_f]
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim
self.pose = int(self.full_dim / round(3 * scale))
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]
def __call__(self, bat):
assert (not self.args.infer), "infer mode"
self.global_step += 1
loss_dict = {}
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
expression = bat['expression'].to(self.device).to(torch.float32)
jaw = poses[:, :3, :]
poses = poses[:, self.c_index, :]
pred = self.generator(in_spec=aud)
D_loss, D_loss_dict = self.get_loss(
pred_poses=pred.detach(),
gt_poses=poses,
aud=aud,
mode='training_D',
)
self.discriminator_optimizer.zero_grad()
D_loss.backward()
self.discriminator_optimizer.step()
G_loss, G_loss_dict = self.get_loss(
pred_poses=pred,
gt_poses=poses,
aud=aud,
expression=expression,
jaw=jaw,
mode='training_G',
)
self.generator_optimizer.zero_grad()
G_loss.backward()
self.generator_optimizer.step()
total_loss = None
loss_dict = {}
for key in list(D_loss_dict.keys()) + list(G_loss_dict.keys()):
loss_dict[key] = G_loss_dict.get(key, 0) + D_loss_dict.get(key, 0)
return total_loss, loss_dict
def get_loss(self,
pred_poses,
gt_poses,
aud=None,
jaw=None,
expression=None,
mode='training_G',
):
loss_dict = {}
aud = aud.transpose(1, 2)
gt_poses = gt_poses.transpose(1, 2)
gt_aud = torch.cat([gt_poses, aud], dim=2)
pred_aud = torch.cat([pred_poses[:, :, 103:], aud], dim=2)
if mode == 'training_D':
dis_real = self.discriminator(gt_aud)
dis_fake = self.discriminator(pred_aud)
dis_error = self.MSELoss(torch.ones_like(dis_real).to(self.device), dis_real) + self.MSELoss(
torch.zeros_like(dis_fake).to(self.device), dis_fake)
loss_dict['dis'] = dis_error
return dis_error, loss_dict
elif mode == 'training_G':
jaw_loss = self.L1Loss(pred_poses[:, :, :3], jaw.transpose(1, 2))
face_loss = self.MSELoss(pred_poses[:, :, 3:103], expression.transpose(1, 2))
body_loss = self.L1Loss(pred_poses[:, :, 103:142], gt_poses[:, :, :39])
hand_loss = self.L1Loss(pred_poses[:, :, 142:], gt_poses[:, :, 39:])
l1_loss = jaw_loss + face_loss + body_loss + hand_loss
dis_output = self.discriminator(pred_aud)
gen_error = self.MSELoss(torch.ones_like(dis_output).to(self.device), dis_output)
gen_loss = self.config.Train.weights.keypoint_loss_weight * l1_loss + self.config.Train.weights.gan_loss_weight * gen_error
loss_dict['gen'] = gen_error
loss_dict['jaw_loss'] = jaw_loss
loss_dict['face_loss'] = face_loss
loss_dict['body_loss'] = body_loss
loss_dict['hand_loss'] = hand_loss
return gen_loss, loss_dict
else:
raise ValueError(mode)
def infer_on_audio(self, aud_fn, fps=30, initial_pose=None, norm_stats=None, id=None, B=1, **kwargs):
output = []
assert self.args.infer, "train mode"
self.generator.eval()
if self.config.Data.pose.normalization:
assert norm_stats is not None
data_mean = norm_stats[0]
data_std = norm_stats[1]
pre_length = self.config.Data.pose.pre_pose_length
generate_length = self.config.Data.pose.generate_length
# assert pre_length == initial_pose.shape[-1]
# pre_poses = initial_pose.permute(0, 2, 1).to(self.device).to(torch.float32)
# B = pre_poses.shape[0]
aud_feat = get_mfcc_ta(aud_fn, sr=22000, fps=fps, smlpx=True, type='mfcc').transpose(1, 0)
num_poses_to_generate = aud_feat.shape[-1]
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device)
with torch.no_grad():
pred_poses = self.generator(aud_feat)
pred_poses = pred_poses.cpu().numpy()
output = pred_poses.squeeze()
return output
def generate(self, aud, id):
self.generator.eval()
pred_poses = self.generator(aud)
return pred_poses
if __name__ == '__main__':
from trainer.options import parse_args
parser = parse_args()
args = parser.parse_args(
['--exp_name', '0', '--data_root', '0', '--speakers', '0', '--pre_pose_length', '4', '--generate_length', '64',
'--infer'])
generator = TrainWrapper(args)
aud_fn = '../sample_audio/jon.wav'
initial_pose = torch.randn(64, 108, 4)
norm_stats = (np.random.randn(108), np.random.randn(108))
output = generator.infer_on_audio(aud_fn, initial_pose, norm_stats)
print(output.shape)
|