File size: 13,697 Bytes
99afdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
'''
not exactly the same as the official repo but the results are good
'''
import sys
import os

from data_utils.lower_body import c_index_3d, c_index_6d

sys.path.append(os.getcwd())

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import math

from nets.base import TrainWrapperBaseClass
from nets.layers import SeqEncoder1D
from losses import KeypointLoss, L1Loss, KLLoss
from data_utils.utils import get_melspec, get_mfcc_psf, get_mfcc_ta
from nets.utils import denormalize

class Conv1d_tf(nn.Conv1d):
    """
    Conv1d with the padding behavior from TF
    modified from https://github.com/mlperf/inference/blob/482f6a3beb7af2fb0bd2d91d6185d5e71c22c55f/others/edge/object_detection/ssd_mobilenet/pytorch/utils.py
    """

    def __init__(self, *args, **kwargs):
        super(Conv1d_tf, self).__init__(*args, **kwargs)
        self.padding = kwargs.get("padding", "same")

    def _compute_padding(self, input, dim):
        input_size = input.size(dim + 2)
        filter_size = self.weight.size(dim + 2)
        effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
        out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
        total_padding = max(
            0, (out_size - 1) * self.stride[dim] + effective_filter_size - input_size
        )
        additional_padding = int(total_padding % 2 != 0)

        return additional_padding, total_padding

    def forward(self, input):
        if self.padding == "VALID":
            return F.conv1d(
                input,
                self.weight,
                self.bias,
                self.stride,
                padding=0,
                dilation=self.dilation,
                groups=self.groups,
            )
        rows_odd, padding_rows = self._compute_padding(input, dim=0)
        if rows_odd:
            input = F.pad(input, [0, rows_odd])

        return F.conv1d(
            input,
            self.weight,
            self.bias,
            self.stride,
            padding=(padding_rows // 2),
            dilation=self.dilation,
            groups=self.groups,
        )


def ConvNormRelu(in_channels, out_channels, type='1d', downsample=False, k=None, s=None, norm='bn', padding='valid'):
    if k is None and s is None:
        if not downsample:
            k = 3
            s = 1
        else:
            k = 4
            s = 2

    if type == '1d':
        conv_block = Conv1d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
        if norm == 'bn':
            norm_block = nn.BatchNorm1d(out_channels)
        elif norm == 'ln':
            norm_block = nn.LayerNorm(out_channels)
    elif type == '2d':
        conv_block = Conv2d_tf(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
        norm_block = nn.BatchNorm2d(out_channels)
    else:
        assert False

    return nn.Sequential(
        conv_block,
        norm_block,
        nn.LeakyReLU(0.2, True)
    )

class Decoder(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(Decoder, self).__init__()
        self.up1 = nn.Sequential(
            ConvNormRelu(in_ch // 2 + in_ch, in_ch // 2),
            ConvNormRelu(in_ch // 2, in_ch // 2),
            nn.Upsample(scale_factor=2, mode='nearest')
        )
        self.up2 = nn.Sequential(
            ConvNormRelu(in_ch // 4 + in_ch // 2, in_ch // 4),
            ConvNormRelu(in_ch // 4, in_ch // 4),
            nn.Upsample(scale_factor=2, mode='nearest')
        )
        self.up3 = nn.Sequential(
            ConvNormRelu(in_ch // 8 + in_ch // 4, in_ch // 8),
            ConvNormRelu(in_ch // 8, in_ch // 8),
            nn.Conv1d(in_ch // 8, out_ch, 1, 1)
        )

    def forward(self, x, x1, x2, x3):
        x = F.interpolate(x, x3.shape[2])
        x = torch.cat([x, x3], dim=1)
        x = self.up1(x)
        x = F.interpolate(x, x2.shape[2])
        x = torch.cat([x, x2], dim=1)
        x = self.up2(x)
        x = F.interpolate(x, x1.shape[2])
        x = torch.cat([x, x1], dim=1)
        x = self.up3(x)
        return x


class EncoderDecoder(nn.Module):
    def __init__(self, n_frames, each_dim):
        super().__init__()
        self.n_frames = n_frames

        self.down1 = nn.Sequential(
            ConvNormRelu(64, 64, '1d', False),
            ConvNormRelu(64, 128, '1d', False),
        )
        self.down2 = nn.Sequential(
            ConvNormRelu(128, 128, '1d', False),
            ConvNormRelu(128, 256, '1d', False),
        )
        self.down3 = nn.Sequential(
            ConvNormRelu(256, 256, '1d', False),
            ConvNormRelu(256, 512, '1d', False),
        )
        self.down4 = nn.Sequential(
            ConvNormRelu(512, 512, '1d', False),
            ConvNormRelu(512, 1024, '1d', False),
        )

        self.down = nn.MaxPool1d(kernel_size=2)
        self.up = nn.Upsample(scale_factor=2, mode='nearest')

        self.face_decoder = Decoder(1024, each_dim[0] + each_dim[3])
        self.body_decoder = Decoder(1024, each_dim[1])
        self.hand_decoder = Decoder(1024, each_dim[2])

    def forward(self, spectrogram, time_steps=None):
        if time_steps is None:
            time_steps = self.n_frames

        x1 = self.down1(spectrogram)
        x = self.down(x1)
        x2 = self.down2(x)
        x = self.down(x2)
        x3 = self.down3(x)
        x = self.down(x3)
        x = self.down4(x)
        x = self.up(x)

        face = self.face_decoder(x, x1, x2, x3)
        body = self.body_decoder(x, x1, x2, x3)
        hand = self.hand_decoder(x, x1, x2, x3)

        return face, body, hand


class Generator(nn.Module):
    def __init__(self,
                 each_dim,
                 training=False,
                 device=None
                 ):
        super().__init__()

        self.training = training
        self.device = device

        self.encoderdecoder = EncoderDecoder(15, each_dim)

    def forward(self, in_spec, time_steps=None):
        if time_steps is not None:
            self.gen_length = time_steps

        face, body, hand = self.encoderdecoder(in_spec)
        out = torch.cat([face, body, hand], dim=1)
        out = out.transpose(1, 2)

        return out


class Discriminator(nn.Module):
    def __init__(self, input_dim):
        super().__init__()
        self.net = nn.Sequential(
            ConvNormRelu(input_dim, 128, '1d'),
            ConvNormRelu(128, 256, '1d'),
            nn.MaxPool1d(kernel_size=2),
            ConvNormRelu(256, 256, '1d'),
            ConvNormRelu(256, 512, '1d'),
            nn.MaxPool1d(kernel_size=2),
            ConvNormRelu(512, 512, '1d'),
            ConvNormRelu(512, 1024, '1d'),
            nn.MaxPool1d(kernel_size=2),
            nn.Conv1d(1024, 1, 1, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = x.transpose(1, 2)

        out = self.net(x)
        return out


class TrainWrapper(TrainWrapperBaseClass):
    def __init__(self, args, config) -> None:
        self.args = args
        self.config = config
        self.device = torch.device(self.args.gpu)
        self.global_step = 0
        self.convert_to_6d = self.config.Data.pose.convert_to_6d
        self.init_params()

        self.generator = Generator(
            each_dim=self.each_dim,
            training=not self.args.infer,
            device=self.device,
        ).to(self.device)
        self.discriminator = Discriminator(
            input_dim=self.each_dim[1] + self.each_dim[2] + 64
        ).to(self.device)
        if self.convert_to_6d:
            self.c_index = c_index_6d
        else:
            self.c_index = c_index_3d
        self.MSELoss = KeypointLoss().to(self.device)
        self.L1Loss = L1Loss().to(self.device)
        super().__init__(args, config)

    def init_params(self):
        scale = 1

        global_orient = round(0 * scale)
        leye_pose = reye_pose = round(0 * scale)
        jaw_pose = round(3 * scale)
        body_pose = round((63 - 24) * scale)
        left_hand_pose = right_hand_pose = round(45 * scale)

        expression = 100

        b_j = 0
        jaw_dim = jaw_pose
        b_e = b_j + jaw_dim
        eye_dim = leye_pose + reye_pose
        b_b = b_e + eye_dim
        body_dim = global_orient + body_pose
        b_h = b_b + body_dim
        hand_dim = left_hand_pose + right_hand_pose
        b_f = b_h + hand_dim
        face_dim = expression

        self.dim_list = [b_j, b_e, b_b, b_h, b_f]
        self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim
        self.pose = int(self.full_dim / round(3 * scale))
        self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]

    def __call__(self, bat):
        assert (not self.args.infer), "infer mode"
        self.global_step += 1

        loss_dict = {}

        aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
        expression = bat['expression'].to(self.device).to(torch.float32)
        jaw = poses[:, :3, :]
        poses = poses[:, self.c_index, :]

        pred = self.generator(in_spec=aud)

        D_loss, D_loss_dict = self.get_loss(
            pred_poses=pred.detach(),
            gt_poses=poses,
            aud=aud,
            mode='training_D',
        )

        self.discriminator_optimizer.zero_grad()
        D_loss.backward()
        self.discriminator_optimizer.step()

        G_loss, G_loss_dict = self.get_loss(
            pred_poses=pred,
            gt_poses=poses,
            aud=aud,
            expression=expression,
            jaw=jaw,
            mode='training_G',
        )
        self.generator_optimizer.zero_grad()
        G_loss.backward()
        self.generator_optimizer.step()

        total_loss = None
        loss_dict = {}
        for key in list(D_loss_dict.keys()) + list(G_loss_dict.keys()):
            loss_dict[key] = G_loss_dict.get(key, 0) + D_loss_dict.get(key, 0)

        return total_loss, loss_dict

    def get_loss(self,
                 pred_poses,
                 gt_poses,
                 aud=None,
                 jaw=None,
                 expression=None,
                 mode='training_G',
                 ):
        loss_dict = {}
        aud = aud.transpose(1, 2)
        gt_poses = gt_poses.transpose(1, 2)
        gt_aud = torch.cat([gt_poses, aud], dim=2)
        pred_aud = torch.cat([pred_poses[:, :, 103:], aud], dim=2)

        if mode == 'training_D':
            dis_real = self.discriminator(gt_aud)
            dis_fake = self.discriminator(pred_aud)
            dis_error = self.MSELoss(torch.ones_like(dis_real).to(self.device), dis_real) + self.MSELoss(
                torch.zeros_like(dis_fake).to(self.device), dis_fake)
            loss_dict['dis'] = dis_error

            return dis_error, loss_dict
        elif mode == 'training_G':
            jaw_loss = self.L1Loss(pred_poses[:, :, :3], jaw.transpose(1, 2))
            face_loss = self.MSELoss(pred_poses[:, :, 3:103], expression.transpose(1, 2))
            body_loss = self.L1Loss(pred_poses[:, :, 103:142], gt_poses[:, :, :39])
            hand_loss = self.L1Loss(pred_poses[:, :, 142:], gt_poses[:, :, 39:])
            l1_loss = jaw_loss + face_loss + body_loss + hand_loss

            dis_output = self.discriminator(pred_aud)
            gen_error = self.MSELoss(torch.ones_like(dis_output).to(self.device), dis_output)
            gen_loss = self.config.Train.weights.keypoint_loss_weight * l1_loss + self.config.Train.weights.gan_loss_weight * gen_error

            loss_dict['gen'] = gen_error
            loss_dict['jaw_loss'] = jaw_loss
            loss_dict['face_loss'] = face_loss
            loss_dict['body_loss'] = body_loss
            loss_dict['hand_loss'] = hand_loss
            return gen_loss, loss_dict
        else:
            raise ValueError(mode)

    def infer_on_audio(self, aud_fn, fps=30, initial_pose=None, norm_stats=None, id=None, B=1, **kwargs):
        output = []
        assert self.args.infer, "train mode"
        self.generator.eval()

        if self.config.Data.pose.normalization:
            assert norm_stats is not None
            data_mean = norm_stats[0]
            data_std = norm_stats[1]

        pre_length = self.config.Data.pose.pre_pose_length
        generate_length = self.config.Data.pose.generate_length
        # assert pre_length == initial_pose.shape[-1]
        # pre_poses = initial_pose.permute(0, 2, 1).to(self.device).to(torch.float32)
        # B = pre_poses.shape[0]

        aud_feat = get_mfcc_ta(aud_fn, sr=22000, fps=fps, smlpx=True, type='mfcc').transpose(1, 0)
        num_poses_to_generate = aud_feat.shape[-1]
        aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
        aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device)

        with torch.no_grad():
            pred_poses = self.generator(aud_feat)
            pred_poses = pred_poses.cpu().numpy()
        output = pred_poses.squeeze()

        return output

    def generate(self, aud, id):
        self.generator.eval()
        pred_poses = self.generator(aud)
        return pred_poses


if __name__ == '__main__':
    from trainer.options import parse_args

    parser = parse_args()
    args = parser.parse_args(
        ['--exp_name', '0', '--data_root', '0', '--speakers', '0', '--pre_pose_length', '4', '--generate_length', '64',
         '--infer'])

    generator = TrainWrapper(args)

    aud_fn = '../sample_audio/jon.wav'
    initial_pose = torch.randn(64, 108, 4)
    norm_stats = (np.random.randn(108), np.random.randn(108))
    output = generator.infer_on_audio(aud_fn, initial_pose, norm_stats)

    print(output.shape)