File size: 7,700 Bytes
99afdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import sys

sys.path.append(os.getcwd())

from nets.layers import *
from nets.base import TrainWrapperBaseClass
# from nets.spg.faceformer import Faceformer
from nets.spg.s2g_face import Generator as s2g_face
from losses import KeypointLoss
from nets.utils import denormalize
from data_utils import get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from sklearn.preprocessing import normalize
import smplx


class TrainWrapper(TrainWrapperBaseClass):
    '''
    a wrapper receving a batch from data_utils and calculate loss
    '''

    def __init__(self, args, config):
        self.args = args
        self.config = config
        self.device = torch.device(self.args.gpu)
        self.global_step = 0

        self.convert_to_6d = self.config.Data.pose.convert_to_6d
        self.expression = self.config.Data.pose.expression
        self.epoch = 0
        self.init_params()
        self.num_classes = 4

        self.generator = s2g_face(
            n_poses=self.config.Data.pose.generate_length,
            each_dim=self.each_dim,
            dim_list=self.dim_list,
            training=not self.args.infer,
            device=self.device,
            identity=False if self.convert_to_6d else True,
            num_classes=self.num_classes,
        ).to(self.device)

        # self.generator = Faceformer().to(self.device)

        self.discriminator = None
        self.am = None

        self.MSELoss = KeypointLoss().to(self.device)
        super().__init__(args, config)

    def init_optimizer(self):
        self.generator_optimizer = optim.SGD(
            filter(lambda p: p.requires_grad,self.generator.parameters()),
            lr=0.001,
            momentum=0.9,
            nesterov=False,
        )

    def init_params(self):
        if self.convert_to_6d:
            scale = 2
        else:
            scale = 1

        global_orient = round(3 * scale)
        leye_pose = reye_pose = round(3 * scale)
        jaw_pose = round(3 * scale)
        body_pose = round(63 * scale)
        left_hand_pose = right_hand_pose = round(45 * scale)
        if self.expression:
            expression = 100
        else:
            expression = 0

        b_j = 0
        jaw_dim = jaw_pose
        b_e = b_j + jaw_dim
        eye_dim = leye_pose + reye_pose
        b_b = b_e + eye_dim
        body_dim = global_orient + body_pose
        b_h = b_b + body_dim
        hand_dim = left_hand_pose + right_hand_pose
        b_f = b_h + hand_dim
        face_dim = expression

        self.dim_list = [b_j, b_e, b_b, b_h, b_f]
        self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim + face_dim
        self.pose = int(self.full_dim / round(3 * scale))
        self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]

    def __call__(self, bat):
        # assert (not self.args.infer), "infer mode"
        self.global_step += 1

        total_loss = None
        loss_dict = {}

        aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32)
        id = bat['speaker'].to(self.device) - 20
        id = F.one_hot(id, self.num_classes)

        aud = aud.permute(0, 2, 1)
        gt_poses = poses.permute(0, 2, 1)

        if self.expression:
            expression = bat['expression'].to(self.device).to(torch.float32)
            gt_poses = torch.cat([gt_poses, expression.permute(0, 2, 1)], dim=2)

        pred_poses, _ = self.generator(
            aud,
            gt_poses,
            id,
        )

        G_loss, G_loss_dict = self.get_loss(
            pred_poses=pred_poses,
            gt_poses=gt_poses,
            pre_poses=None,
            mode='training_G',
            gt_conf=None,
            aud=aud,
        )

        self.generator_optimizer.zero_grad()
        G_loss.backward()
        grad = torch.nn.utils.clip_grad_norm(self.generator.parameters(), self.config.Train.max_gradient_norm)
        loss_dict['grad'] = grad.item()
        self.generator_optimizer.step()

        for key in list(G_loss_dict.keys()):
            loss_dict[key] = G_loss_dict.get(key, 0).item()

        return total_loss, loss_dict

    def get_loss(self,
                 pred_poses,
                 gt_poses,
                 pre_poses,
                 aud,
                 mode='training_G',
                 gt_conf=None,
                 exp=1,
                 gt_nzero=None,
                 pre_nzero=None,
                 ):
        loss_dict = {}


        [b_j, b_e, b_b, b_h, b_f] = self.dim_list

        MSELoss = torch.mean(torch.abs(pred_poses[:, :, :6] - gt_poses[:, :, :6]))
        if self.expression:
            expl = torch.mean((pred_poses[:, :, -100:] - gt_poses[:, :, -100:])**2)
        else:
            expl = 0

        gen_loss = expl + MSELoss

        loss_dict['MSELoss'] = MSELoss
        if self.expression:
            loss_dict['exp_loss'] = expl

        return gen_loss, loss_dict

    def infer_on_audio(self, aud_fn, id=None, initial_pose=None, norm_stats=None, w_pre=False, frame=None, am=None, am_sr=16000, **kwargs):
        '''
        initial_pose: (B, C, T), normalized
        (aud_fn, txgfile) -> generated motion (B, T, C)
        '''
        output = []

        # assert self.args.infer, "train mode"
        self.generator.eval()

        if self.config.Data.pose.normalization:
            assert norm_stats is not None
            data_mean = norm_stats[0]
            data_std = norm_stats[1]

        # assert initial_pose.shape[-1] == pre_length
        if initial_pose is not None:
            gt = initial_pose[:,:,:].permute(0, 2, 1).to(self.generator.device).to(torch.float32)
            pre_poses = initial_pose[:,:,:15].permute(0, 2, 1).to(self.generator.device).to(torch.float32)
            poses = initial_pose.permute(0, 2, 1).to(self.generator.device).to(torch.float32)
            B = pre_poses.shape[0]
        else:
            gt = None
            pre_poses=None
            B = 1

        if type(aud_fn) == torch.Tensor:
            aud_feat = torch.tensor(aud_fn, dtype=torch.float32).to(self.generator.device)
            num_poses_to_generate = aud_feat.shape[-1]
        else:
            aud_feat = get_mfcc_ta(aud_fn, am=am, am_sr=am_sr, fps=30, encoder_choice='faceformer')
            aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0)
            aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.generator.device).transpose(1, 2)
        if frame is None:
            frame = aud_feat.shape[2]*30//16000
        #
        if id is None:
            id = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32, device=self.generator.device)
        else:
            id = F.one_hot(id, self.num_classes).to(self.generator.device)

        with torch.no_grad():
            pred_poses = self.generator(aud_feat, pre_poses, id, time_steps=frame)[0]
            pred_poses = pred_poses.cpu().numpy()
        output = pred_poses

        if self.config.Data.pose.normalization:
            output = denormalize(output, data_mean, data_std)

        return output


    def generate(self, wv2_feat, frame):
        '''
        initial_pose: (B, C, T), normalized
        (aud_fn, txgfile) -> generated motion (B, T, C)
        '''
        output = []

        # assert self.args.infer, "train mode"
        self.generator.eval()

        B = 1

        id = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32, device=self.generator.device)
        id = id.repeat(wv2_feat.shape[0], 1)

        with torch.no_grad():
            pred_poses = self.generator(wv2_feat, None, id, time_steps=frame)[0]
        return pred_poses