vscode69's picture
second half
99afdfe
raw
history blame
10.6 kB
import numpy as np
# import librosa #has to do this cause librosa is not supported on my server
import python_speech_features
from scipy.io import wavfile
from scipy import signal
import librosa
import torch
import torchaudio as ta
import torchaudio.functional as ta_F
import torchaudio.transforms as ta_T
# import pyloudnorm as pyln
def load_wav_old(audio_fn, sr = 16000):
sample_rate, sig = wavfile.read(audio_fn)
if sample_rate != sr:
result = int((sig.shape[0]) / sample_rate * sr)
x_resampled = signal.resample(sig, result)
x_resampled = x_resampled.astype(np.float64)
return x_resampled, sr
sig = sig / (2**15)
return sig, sample_rate
def get_mfcc(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = librosa.load(audio_fn, sr=sr, mono=True)
if win_size is None:
hop_len=int(sr / fps)
else:
hop_len=int(sr / win_size)
n_fft=2048
C = librosa.feature.mfcc(
y = y,
sr = sr,
n_mfcc = n_mfcc,
hop_length = hop_len,
n_fft = n_fft
)
if C.shape[0] == n_mfcc:
C = C.transpose(1, 0)
return C
def get_melspec(audio_fn, eps=1e-6, fps = 25, sr=16000, n_mels=64):
raise NotImplementedError
'''
# y, sr = load_wav(audio_fn=audio_fn, sr=sr)
# hop_len = int(sr / fps)
# n_fft = 2048
# C = librosa.feature.melspectrogram(
# y = y,
# sr = sr,
# n_fft=n_fft,
# hop_length=hop_len,
# n_mels = n_mels,
# fmin=0,
# fmax=8000)
# mask = (C == 0).astype(np.float)
# C = mask * eps + (1-mask) * C
# C = np.log(C)
# #wierd error may occur here
# assert not (np.isnan(C).any()), audio_fn
# if C.shape[0] == n_mels:
# C = C.transpose(1, 0)
# return C
'''
def extract_mfcc(audio,sample_rate=16000):
mfcc = zip(*python_speech_features.mfcc(audio,sample_rate, numcep=64, nfilt=64, nfft=2048, winstep=0.04))
mfcc = np.stack([np.array(i) for i in mfcc])
return mfcc
def get_mfcc_psf(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = load_wav_old(audio_fn, sr=sr)
if y.shape.__len__() > 1:
y = (y[:,0]+y[:,1])/2
if win_size is None:
hop_len=int(sr / fps)
else:
hop_len=int(sr/ win_size)
n_fft=2048
#hard coded for 25 fps
if not smlpx:
C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=0.04)
else:
C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01/15)
# if C.shape[0] == n_mfcc:
# C = C.transpose(1, 0)
return C
def get_mfcc_psf_min(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = load_wav_old(audio_fn, sr=sr)
if y.shape.__len__() > 1:
y = (y[:, 0] + y[:, 1]) / 2
n_fft = 2048
slice_len = 22000 * 5
slice = y.size // slice_len
C = []
for i in range(slice):
if i != (slice - 1):
feat = python_speech_features.mfcc(y[i*slice_len:(i+1)*slice_len], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
else:
feat = python_speech_features.mfcc(y[i * slice_len:], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
C.append(feat)
return C
def audio_chunking(audio: torch.Tensor, frame_rate: int = 30, chunk_size: int = 16000):
"""
:param audio: 1 x T tensor containing a 16kHz audio signal
:param frame_rate: frame rate for video (we need one audio chunk per video frame)
:param chunk_size: number of audio samples per chunk
:return: num_chunks x chunk_size tensor containing sliced audio
"""
samples_per_frame = chunk_size // frame_rate
padding = (chunk_size - samples_per_frame) // 2
audio = torch.nn.functional.pad(audio.unsqueeze(0), pad=[padding, padding]).squeeze(0)
anchor_points = list(range(chunk_size//2, audio.shape[-1]-chunk_size//2, samples_per_frame))
audio = torch.cat([audio[:, i-chunk_size//2:i+chunk_size//2] for i in anchor_points], dim=0)
return audio
def get_mfcc_ta(audio_fn, eps=1e-6, fps=15, smlpx=False, sr=16000, n_mfcc=64, win_size=None, type='mfcc', am=None, am_sr=None, encoder_choice='mfcc'):
if am is None:
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
win_length = hop_length * 2
n_mels = 256
n_mfcc = 64
if type == 'mfcc':
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0,1).numpy()
elif type == 'mel':
# audio = 0.01 * audio / torch.mean(torch.abs(audio))
mel_transform = ta_T.MelSpectrogram(
sample_rate=sr, n_fft=n_fft, win_length=None, hop_length=hop_length, n_mels=n_mels
)
audio_ft = mel_transform(audio).squeeze(0).transpose(0,1).numpy()
# audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).transpose(0,1).numpy()
elif type == 'mel_mul':
audio = 0.01 * audio / torch.mean(torch.abs(audio))
audio = audio_chunking(audio, frame_rate=fps, chunk_size=sr)
mel_transform = ta_T.MelSpectrogram(
sample_rate=sr, n_fft=n_fft, win_length=int(sr/20), hop_length=int(sr/100), n_mels=n_mels
)
audio_ft = mel_transform(audio).squeeze(1)
audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).numpy()
else:
speech_array, sampling_rate = librosa.load(audio_fn, sr=16000)
if encoder_choice == 'faceformer':
# audio_ft = np.squeeze(am(speech_array, sampling_rate=16000).input_values).reshape(-1, 1)
audio_ft = speech_array.reshape(-1, 1)
elif encoder_choice == 'meshtalk':
audio_ft = 0.01 * speech_array / np.mean(np.abs(speech_array))
elif encoder_choice == 'onset':
audio_ft = librosa.onset.onset_detect(y=speech_array, sr=16000, units='time').reshape(-1, 1)
else:
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
win_length = hop_length * 2
n_mels = 256
n_mfcc = 64
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0, 1).numpy()
return audio_ft
def get_mfcc_sepa(audio_fn, fps=15, sr=16000):
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
n_mels = 256
n_mfcc = 64
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft_0 = mfcc_transform(audio[0, :sr*2]).squeeze(dim=0).transpose(0,1).numpy()
audio_ft_1 = mfcc_transform(audio[0, sr*2:]).squeeze(dim=0).transpose(0,1).numpy()
audio_ft = np.concatenate((audio_ft_0, audio_ft_1), axis=0)
return audio_ft, audio_ft_0.shape[0]
def get_mfcc_old(wav_file):
sig, sample_rate = load_wav_old(wav_file)
mfcc = extract_mfcc(sig)
return mfcc
def smooth_geom(geom, mask: torch.Tensor = None, filter_size: int = 9, sigma: float = 2.0):
"""
:param geom: T x V x 3 tensor containing a temporal sequence of length T with V vertices in each frame
:param mask: V-dimensional Tensor containing a mask with vertices to be smoothed
:param filter_size: size of the Gaussian filter
:param sigma: standard deviation of the Gaussian filter
:return: T x V x 3 tensor containing smoothed geometry (i.e., smoothed in the area indicated by the mask)
"""
assert filter_size % 2 == 1, f"filter size must be odd but is {filter_size}"
# Gaussian smoothing (low-pass filtering)
fltr = np.arange(-(filter_size // 2), filter_size // 2 + 1)
fltr = np.exp(-0.5 * fltr ** 2 / sigma ** 2)
fltr = torch.Tensor(fltr) / np.sum(fltr)
# apply fltr
fltr = fltr.view(1, 1, -1).to(device=geom.device)
T, V = geom.shape[1], geom.shape[2]
g = torch.nn.functional.pad(
geom.permute(2, 0, 1).view(V, 1, T),
pad=[filter_size // 2, filter_size // 2], mode='replicate'
)
g = torch.nn.functional.conv1d(g, fltr).view(V, 1, T)
smoothed = g.permute(1, 2, 0).contiguous()
# blend smoothed signal with original signal
if mask is None:
return smoothed
else:
return smoothed * mask[None, :, None] + geom * (-mask[None, :, None] + 1)
if __name__ == '__main__':
audio_fn = '../sample_audio/clip000028_tCAkv4ggPgI.wav'
C = get_mfcc_psf(audio_fn)
print(C.shape)
C_2 = get_mfcc_librosa(audio_fn)
print(C.shape)
print(C)
print(C_2)
print((C == C_2).all())
# print(y.shape, sr)
# mel_spec = get_melspec(audio_fn)
# print(mel_spec.shape)
# mfcc = get_mfcc(audio_fn, sr = 16000)
# print(mfcc.shape)
# print(mel_spec.max(), mel_spec.min())
# print(mfcc.max(), mfcc.min())